Skip to main content

Advertisement

Log in

Soil amendments for vanadium remediation: a review of remediation of vanadium in soil through chemical stabilization and bioremediation

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Immobilization of vanadium (V) in soils is one option to prevent groundwater contamination and plant uptake. Phytoremediation, microbial remediation, and chemical stabilization using soil amendments are among the leading environmentally friendly and economically feasible techniques in V remediation. Soil amendments were used to reduce V mobility by immobilizing it in the soil matrix through chemical stabilization, while bioremediation methods such as phytoremediation and microbial remediation were used to remove V from contaminated soils. Vanadium exists in several species and among them V5+ species are the most prevalent, toxic, and soluble form and present as a negatively charged ion (H2VO4 and HVO42−) in oxic soils above pH 4. Amendments used for chemical stabilization can change the physicochemical properties enhancing immobility of V in soil. The pH of the soil environment, point of zero charge of the colloid surface, and redox conditions are some of the most important factors that determine the efficiency of the amendment. Commonly used amendments for chemical stabilization include biochar, zeolites, organic acids, various clay minerals and oxides of elements such as iron, titanium, manganese, and aluminum. For bioremediation, chelating agents and microbial communities are used to mobilize V to enhance phyto-or microbial-extraction procedures. The objectives of this review were to discuss remediation methods of V while considering V speciation and toxicity in soil, and soil amendment application for V removal from soil. The information compiled in this review can guide further research on soil amendments for optimal V remediation in largely contaminated industrial sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abernathy, M. J., Schaefer, M. V., Vessey, C. J., Liu, H., & Ying, S. C. (2021). Oxidation of V (IV) by birnessite: Kinetics and surface complexation. Environmental Science & Technology, 55(17), 11703–11712.

    CAS  Google Scholar 

  • Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., Ghoveisi, H., & Wang, S. (2018). Removal of Cu(II), Cd(II), and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 180, 437–449.

    CAS  Google Scholar 

  • Aihemaiti, A., Gao, Y., Liu, L., Yang, G., Han, S., & Jiang, J. (2020b). Effects of liquid digestate on the valence state of vanadium in plant and soi microbial community response. Environmental Pollution, 265, 114916.

    CAS  Google Scholar 

  • Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., & Jiang, J. (2020a). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712, 135637.

    CAS  Google Scholar 

  • Aihemaiti, A., Jiang, J., Blaney, L., Zou, Q., Gao, Y., Meng, Y., Yang, M., & Xu, Y. (2019). The detoxification effect of liquid digestate on vanadium toxicity to see germination and seedling growth of dog’s tails grass. Journal of Hazardous Materials, 369, 456–464.

    CAS  Google Scholar 

  • Aihemaiti, A., Jiang, J., Li, D., Li, T., Zhang, W., & Ding, X. (2017). Toxic metal tolerance in native plant species grown in a vanadium mining area. Environmental Science and Pollution Research, 24, 26839–265850.

    CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediatoin of heavy metals–concepts and applications. Chemosphere, 91, 869–881.

    CAS  Google Scholar 

  • Anke, M. (2004). Vanadium-an element both essential and toxic to plants, animals, and humans? Anal Real Acad Nac Farm, 70, 961–999.

    CAS  Google Scholar 

  • Cao, X., Diao, M., Zhang, B., Liu, H., Wang, S., & Yang, M. (2017). Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. Chemosphere, 183, 9–17.

    CAS  Google Scholar 

  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology, 43, 3285–3291.

    CAS  Google Scholar 

  • Carpentier, W., Sandra, K., Smet, I. D., Brige, A., Smet, L. D., Beeumen, J. V. (2004). Microbial reduction and precipitation of vanadium by shewanella oneidensis. Applied and Environmental Microbiology, 3636–3639.

  • CCME. (2006). Water quality guidelines for the protection of agriculture, irrigation, agricultural lands; In: Canadian environmental quality guidelines, 1999. https://ccme.ca/en/summary-table.

  • Chen, Y., Liu, D., Ma, J., Jin, B., Peng, J., & He, X. (2021b). Assessing the influence of immobilization remediation of heavy metal contaminated farmland on the physical properties of soil. Science of the Total Environment, 781, 146773. https://doi.org/10.1016/j.scitotenv.2021b.146773

    Article  CAS  Google Scholar 

  • Chen, L., Liu, J. R., Hu, W. F., Gao, J., & Tang, J. Y. (2021a). Vanadium in soil-plant systems: Source, fate, toxicity, and bioremediation. Journal of Hazardous Materials, 405, 124200. https://doi.org/10.1016/j.jhazmat.2020.124200

    Article  CAS  Google Scholar 

  • Chiavola, A., D’Amato, E., & Boni, M. R. (2019). Comparison of different iron oxide adsorbents for combined arsenic, vanadium and fluoride removal from drinking water. International Journal of Environmental Science and Technology, 16(10), 6053–6064.

    CAS  Google Scholar 

  • Crans, D. C., Smee, J. J., Gaidamauskas, E., & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chemical Reviews, 104(2), 849–902.

    CAS  Google Scholar 

  • Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y., Liu, L., Yin, C., Wei, C., Yang, Y., & Hussain, Q. (2016). Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 93, 1–8.

    Google Scholar 

  • Dong, Y., Lin, H., Zhao, Y., & Menzembere, E. R. G. Y. (2021). Remediation of vanadium-contaminated soils by the combination of natural clay mineral and humic acid. Journal of Cleaner Production, 279, 123874.

    CAS  Google Scholar 

  • Environment & Climate Change Canada. (2016). Federal environmental quality guidelines vanadium. https://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=48D3A655-1.

  • El-Alam, I., Verdin, A., Fontaine, J., Laruelle, F., Chahine, R., Makhlouf, H., & Sahraoui, A. L. H. (2018). Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil. Environmental Monitoring and Assessments, 190, 738.

    Google Scholar 

  • El-Naggar, A., Shaheen, S. M., Chang, S. C., Hou, D., Ok, Y. S., & Rinklebe, J. (2021). Biochar surface functionality plays a vital role in immobilization and phytoavailability of soil vanadium. ACS Sustainable Chemistry & Engineering, 9, 6864–6874.

    CAS  Google Scholar 

  • Fei, Y., Zhang, B., He, J., Chen, C., & Liu, H. (2022). Dynamics of vertical vanadium migration in soil and interactions with indigenous microorganisms adjacent to tailing reservoir. Journal of Hazardous Materials, 424, 127608. https://doi.org/10.1016/j.jhazmat.2021.127608

    Article  CAS  Google Scholar 

  • Gan, C., Chen, T., & Yang, J. (2021). Growth responses and accumulation of vanadium in alfalfa, milkvetch root, and swamp morning glory and their potential in phytoremediation. Bulletin of Environmental Contamination and Toxicology, 107, 559–564.

    CAS  Google Scholar 

  • Gan, C., Liu, M., Lu, J., & Yang, J. (2020). Adsorption and desorption characteristics of vanadium (V) on silica. Water, Air, and Soil Pollution, 231, 10.

    CAS  Google Scholar 

  • Ghanim, B., Murnane, J. G., O’Donoghue, L., Courtney, R., Pembroke, J., & T., O’Dwyer, T.F. (2020). Removal of vanadium from aqueous solution using a red mud modified saw dust biochar. Journal of Water Process Engineering, 33, 101076.

    Google Scholar 

  • CSA Global. (2020). Lac Dore project, Chibougamau, Quebec, Canada: NI 43–101 technical report No. R441.2020.

  • Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wei, J., Huang, C., Xu, P., Wan, J., & Zhang, C. (2018). Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology, 253, 64–71.

    CAS  Google Scholar 

  • González, N., Esplugas, R., Marquès, M., & Domingo, J. L. (2021). Concentrations of arsenic and vanadium in environmental and biological samples collected in the neighborhood of petrochemical industries: A review of the scientific literature. Science of the Total Environment, 771, 145149.

    Google Scholar 

  • Gustafsson, J. P. (2019). Vanadium geochemistry in the biogeosphere–speciation, solid-solution interactions, and ecotoxicity. Applied Geochemistry, 102, 1–25.

    CAS  Google Scholar 

  • Hao, L., Zhang, B., Feng, C., Zhang, Z., Lei, Z., Shimizu, K., Cao, X., Liu, H., & Liu, H. (2018). Microbial vanadium (V) reduction in groundwater with different soils from vanadium ore mining areas. Chemosphere, 202, 272–279.

    CAS  Google Scholar 

  • He, W., Yang, J., Li, J., Ai, Y., & Li, J. (2020). Stabilization of vanadium in calcerous purple soil using modified Na-bentonites. Journal of Cleaner Production, 268, 121978. https://doi.org/10.1016/j.jcelpro.2020.121978

    Article  CAS  Google Scholar 

  • He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846–855.

    CAS  Google Scholar 

  • Hu, X., Yue, Y., & Peng, X. (2018). Release kinetics of vanadium from vanadium (III, IV, and V) oxides: Effect of pH, temperature, and oxide dose. Journal of Environmental Sciences, 67, 96–103.

    CAS  Google Scholar 

  • Huang, J. H., Huang, F., Evans, L., & Glasauer, S. (2015). Vanadium: Global (bio)geochemistry. Chemical Geology, 417, 68–89.

    CAS  Google Scholar 

  • Huang, X., Ye, Z., Chen, L., Chen, X., Liu, C., Yin, Y., Wang, X., & Wei, Y. (2020). Removal of V+5 from solution using a silica-supported primary amine resin: Batch studies, experimental analysis, and mathematical modeling. Molecules, 25, 1448.

    CAS  Google Scholar 

  • Ibrahim, M., Khan, S., Hao, X., & Li, G. (2016). Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil. International Journal of Environmental Science and Technology, 13, 2467–2474.

    CAS  Google Scholar 

  • Imtiaz, M., Rizwan, M. S., Xiong, S., Li, H., Ashraf, M., Shahzad, S. M., Shahzad, M., Rizwan, M., & Tu, S. (2015). Vanadium, recent advancements and research prospects: A review. Environment International, 80, 79–88.

    CAS  Google Scholar 

  • Imura, H., Shimada, A., Naota, M., Morita, T., Togawa, M., Hasegawa, T., & Seko, Y. (2013). Vanadium toxicity in mice: Possible impairment of lipid metabolism and musosal epithelial cell necrosis in the small intestine. Toxilogical Pathology, 41, 842–856.

    CAS  Google Scholar 

  • Indraratne, S. P., Attanayake, C. P., Kumaragamage, D., Amarawansha, G., Goltz, D. M., & Applin, D. M. (2023). Mobility of arsenic and vanadium in waterlogged calcareous soils due to addition of zeolite and manganese oxide amendments. Journal Environmental Quality. https://doi.org/10.1002/jeq2.20451

    Article  Google Scholar 

  • Indraratne, S. P., Pierzynski, G. M., Baker, L. R., & Prasad, P. V. V. (2021). Nano-oxides immobilize cadmium, lead, and zinc in mine spoils and contaminated soils facilitating plant growth. Canadian Journal of Soil Science, 101, 543–554.

    CAS  Google Scholar 

  • Jiang, J., Yang, M., Gao, Y., Wang, J., Li, D., & Li, T. (2017). Removal of toxic metals from vanadium-contaminated soils using a washing method: Reagent selection and parameter optimization. Chemosphere, 180, 295–301.

  • Khan, S., Kazi, T. G., Kolachi, N. F., Baig, J. A., Afridi, H. I., Shah, A. Q., Sham, K., & Shah, F. (2011). Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant. Journal of Hazardous Materials, 190(1–3), 738–743.

    CAS  Google Scholar 

  • Komarek, M., Vanek, A., & Ettler, V. (2013). Chemical stabilization of metals and arsenic in contaminated soils using oxides–a review. Environmental Pollution, 172, 9–22.

    CAS  Google Scholar 

  • Kumpiene, J., Antelo, J., Brannvall, E., Carabante, I., Ek, K., Komarek, M., Soderberg, C., & Warell, L. (2019). In situ stabilization of trace element-contaminated soil–field demonstrations and barriers to transition from laboratory to the field–a review. Applied Geochemistry, 100, 335–351.

    CAS  Google Scholar 

  • Leblanc, C., Vilter, H., Fournier, J. B., Delage, L., Potin, P., Rebuffet, E., Michel, G., Solari, P. L., Feiters, M. C., & Czjzek, M. (2015). Vanadium haloperoxidases: From the discovery 30 years ago to X-ray crystallographic and V K-edge absorption spectroscopic studies. Coordination Chemistry Reviews, 301–302, 134–146.

    Google Scholar 

  • Li, Y., Zhang, B., Liu, Z., Wang, S., Yao, J., & Borthwick, A. G. L. (2020). Vanadium contamination and associated health risk of farmland soil near smelters throughout China. Environmental Pollution, 263, 114540.

    CAS  Google Scholar 

  • Lin, H., Liu, J., Dong, Y., & He, Y. (2019). The effect of substrates on the removal of low-level vanadium, chromium and cadmium from polluted river water by ecological floating beds. Ecotoxicology and Environmental Safety, 169, 856–862.

    CAS  Google Scholar 

  • Liu, H., Zhang, B., Yuan, H., Cheng, Y., Wang, S., & He, Z. (2017). Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community. Environmental Pollution, 231, 1362–1369.

    CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for removal of heavy-metal contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    CAS  Google Scholar 

  • Liu, J., Huang, Y., Li, H., & Duan, H. (2022). Recent advances in removal techniques of vanadium from water: A comprehensive review. Chemosphere, 287, 132021.

  • Lomaglio, T., Hambil-Hattab, N., Miard, F., Lebrun, M., Nandillon, R., Trupiano, D., Scippa, G. S., Gauthier, A., Motelica-Heino, M., Bourgerie, S., & Morabito, D. (2018). Cd, Pb, and Zn mobility and bioavailability in contaminated soils from a former smelting site amended with biochar. Environmental Science and Pollution Research, 25, 25744–25756.

    CAS  Google Scholar 

  • Luo, X., Yu, L., Wang, C., Yin, X., Mosa, A., Lv, J., & Sun, H. (2017). Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere, 169, 609–617.

    CAS  Google Scholar 

  • McKenzie, R. H., Bremer, E., Kryzanowski, L., Middleton, A. B., Solberg, E. D., Heaney, D., Coy, G., & Harapiak, J. (2003). Yield benefit of phosphorus fertilizer for wheat, barley and canola in Alberta. Canadian Journal of Soil Science, 83, 431–441.

    CAS  Google Scholar 

  • Mehmood, S., Rizwan, M., Bashir, S., Ditta, A., Aziz, O., Yong, L. Z., Dai, Z., Akmal, M., Ahmed, W., Adeel, M., Imtiaz, M., & Tu, S. (2018). Comparative effects of biochar, slag, and ferrous–Mn ore on lead and cadmium immobilization in soil. Bulletin of Environmental Contamination and Toxicology, 100, 286–292.

    CAS  Google Scholar 

  • Mermut, A. R., Jain, J. C., Song, L., Kerrich, R., Kozak, L., & Jana, S. (1996). Trace element concentrations of selected soils and fertilizers in Saskatchewan Canada. Journal of Environmental Quality, 25(4), 845–853. https://doi.org/10.2134/JEQ1996.00472425002500040028X

    Article  CAS  Google Scholar 

  • Mohammadian, S., Krok, B., Fritzsche, A., Bianco, C., Tosco, T., Cagigal, E., Mata, B., Gonzalez, V., Dies-Ortiz, M., Ramos, V., Montalvo, D., Smolders, E., Sethi, R., & Meckenstock, R. U. (2021). Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater. Journal of Contaminant Hydrology, 237, 103741.

    CAS  Google Scholar 

  • Molina, M., Aburto, F., Calderon, R., Cazanga, M., & Escudey, M. (2009). Trace element composition of selected fertilizers used in Chile: Phosphorus fertilizers as a source of long-term soil contamination. Soil and Sediment, 18, 497–511. https://doi.org/10.1010/15320380902962320

    Article  CAS  Google Scholar 

  • Moskalyk, R. R., & Alfantazi, A. M. (2003). Processing of vanadium: a review. Minerals Engineering, 16, 793–805. https://doi.org/10.1016/S0892-6875(03)00213-9

    Article  CAS  Google Scholar 

  • Naeem, A., Westerhoff, P., & Mustafa, S. (2007). Vandaium removed by metal (hydr)oxide adsorbents. Water Research, 41, 1596–1602.

    CAS  Google Scholar 

  • O’loughlin, E. J., Boyanov, M. I., & Kemner, K. M. (2021). Reduction of vanadium (V) by iron (II)-bearing minerals. Minerals, 11, 316.

    Google Scholar 

  • Ortiz-Bernard, I., Anderson, R. T., Vrionis, H. A., & Lovley, D. R. (2004). Vanadium respiration by geobacter metallireducens: Novel strategy for in situ removal of vanadium from groundwater. Applied Environmental Microbiology, 70, 3091–3095.

    Google Scholar 

  • Pena, M., Meng, X., Korfiatis, G. P., & Jing, C. (2006). Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science & Technology, 40(4), 1257–1262.

    CAS  Google Scholar 

  • Peng, Z., Wen, J., Liu, Y., Zeng, G., Yi, Y., Fang, Y., Zhang, S., Deng, J., & Cai, X. (2018). Heavy metal leachability in soil amended with zeolite-or biochar-modified contaminated sediment. Environmental Monitoring Assessment, 190, 751.

    Google Scholar 

  • Pessoa, J. C., Garribba, E., Santos, M. F. A., & Santos-Silva, T. (2015). Vanadium and proteins: Uptake, transport, structure, activity, and function. Coordiation Chemistry Reviews, 301–302, 49–86.

    Google Scholar 

  • Qian, Y., Gallagher, F. J., Feng, H., Wu, M., & Zhu, Q. (2014). Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site. Science of the Total Environment, 476–477, 696–704.

    Google Scholar 

  • Reijonen, I., Metzler, M., & Hartikainen, H. (2016). Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: the underlying basis for risk assessment. Environmental Pollution, 210, 371–379.

  • Reijonen, I., Metzler, M., & Hartikainen, H. (2022). Impact of soil pH and organic matter on the chemical bioavailablity of vanadium species: The underlying basis for risk assessment. Environmental Pollution, 210, 371–379.

    Google Scholar 

  • Roychoudhury, A. (2020). Vanadium uptake and toxicity in plants. SF Journal of Agricultural and Crop Management, 1(2), 1010.

    Google Scholar 

  • Saheli, S., Alijani, S., & Anbia, M. (2019). Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. International Journal of Biological Macromolecules, 164, 105–120.

    Google Scholar 

  • Sarkar, D., Makris, K. C., Vandanapu, V., & Datta, R. (2007). Arsenic immobilization in soils amended with drinking water treatment residuals. Environmental Pollution, 146, 414–419. https://doi.org/10.1016/J.ENVPOL.2006.06.03

    Article  CAS  Google Scholar 

  • Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soil contaminated with heavy metals: Modificatoins and future prospectives. Chemosphere, 171, 710–721.

    CAS  Google Scholar 

  • Schlesinger, W. H., Klein, E. M., & Vengosh, A. (2018). Global biogeochemical cycle of vanadium. Proceedings of the National Academy of Sciences, 114(54), E11092–E11100. https://doi.org/10.1073/pnas.1715500114

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Alessi, D. S., Tack, F. M., Ok, Y. S., Kim, K. H., Gustafsson, J. P., Sparks, D. L., & Rinklebe, J. (2019). Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications-a review. Advances in Colloid and Interface Science, 265, 1–13. https://doi.org/10.1016/j.cis.2019.01.002

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015). Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74, 319–326.

    Google Scholar 

  • Shaheen, S. M., Rinklebe, J., Rupp, H., & Meissner, R. (2014). Lysimeter trials to assess the impact of different flood–dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil. Geoderma, 228, 5–13.

    Google Scholar 

  • Sippel, D., & Einsle, O. (2017). The structure of vanadium nitrogenase reveals an unusuaul bridging ligand. Nature Chemical Biology, 13, 956–960.

    CAS  Google Scholar 

  • Tella, E., Panagiotou, G. D., Petsi, T., Bourikas, K., Kordulis, C., & Lycourghiotis, A. (2010). The mechanism of retention of vanadium oxo-species at the “titanium oxide/aqueous solution” interface. Glob NEST J, 12, 231–238.

    Google Scholar 

  • Tian, L. Y., Yang, J. Y., & Huang, J. H. (2015). Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environmental Science and Pollution Research, 22, 9215–9223.

    CAS  Google Scholar 

  • Vareda, J. P., & Duraes, L. (2017). Functionalized silica xerogels for adsorption of heavy metals from groundwater and soils. J Sol-Gel Sci. Technology, 84, 400–408.

    CAS  Google Scholar 

  • Watt, J. A. J., Burke, I. T., Edwards, R. A., Malcolm, H. M., Mayes, W. M., Olszewska, J. P., Pan, G., Graham, M. C., Heal, K. V., Rose, N. L., Turner, S. D., & Spears, B. M. (2018). Vanadium: A re-emerging environmental hazard. Environmental Science & Technology, 52, 11973–11974.

    CAS  Google Scholar 

  • Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261.

    CAS  Google Scholar 

  • Wolowicz, A., Wawrzkiewicz, M., Hubicki, Z., Siwinska-Ciesielczyk, K., Kubiak, A., & Jesionowski, T. (2022). Enhanced removal of vanadium (V) from acidic streams using binary oxide systems of TiO2-ZrO2 and TiO2-ZnO type. Separation and Purification Technology, 280, 119916. https://doi.org/10.1016/j.seppur.2021.119916

    Article  CAS  Google Scholar 

  • Wright, M. T., Stollenwerk, K. G., & Belitz, K. (2014). Assessing the solubility controls on vanadium in groundwater, northeastern San Joaquin Valley, CA. Applied Geochemistry, 48, 41–52.

    CAS  Google Scholar 

  • Xiao, X., Jiang, Z., Guo, Z., Wang, M., Zhu, H., Han, X. (2017). Effect of simulated acid rain on leaching and transformation of vanadium n paddy soils from stone coal smelting area. Process Safety and Environmental Protection, 109, 697–703.

    CAS  Google Scholar 

  • Yang, J., Tang, Y. (2015). Accumulation and biotransformation of vanadium in Opuntiamicrodasys. Bullentin of Environmental Contamination and Toxicology, 94, 448–452.

    CAS  Google Scholar 

  • Yang, J., Tang, Y., Yang, K., Rouff, A. A., Elzinga, E. J., & Huang, J. (2014). Leaching characteristics of vanadium in mine talings and soils near a vanadium titanomagnetite mining site. Journal of Hazardous Materials, 264, 498–504.

    CAS  Google Scholar 

  • Yang, J., Wang, Y., Gao, X., Zuo, R., Song, L., Jin, C., & Teng, Y. (2022). Vanadium: A review of different extraction methods to evaluate bioavailability and speciation. Minerals, 12(5), 642.

  • Yayayuruk, A. E., Shahwan, T., Sanli-Mohamed, G., & Eroglu, A. E. (2018). Trypsin-immobilized silica: A novel adsorbent for V(IV) and V+5 removal from water. Water Environment Research, 90, 2056–2065.

    CAS  Google Scholar 

  • Yu, Y., Li, J., Liao, Y., & Yang, J. (2020). Effectivness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. Journal of Cleaner Production, 277, 123506.

    CAS  Google Scholar 

  • Zhang, B., Hao, L., Tian, C., Yuan, S., Feng, C., Ni, J., & Borthwick, A. G. L. (2015). Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture. Bioresource Technology, 192, 410–417.

    CAS  Google Scholar 

  • Zhang, H., Zhang, B., Wang, S., Chen, J., Jiang, B., & Xing, Y. (2020). Spatiotemporal vanadium distribution in soils with microbial community dynamics at vanadium smelting site. Environmental Pollution, 265, 114782.

    CAS  Google Scholar 

  • Zheng, R., Feng, X., Zou, W., Wang, R., Yang, D., Wei, W., Li, S., & Chen, H. (2021). Converting loess into zeolite for heavy metal polluted soil remediation based on “soil for soil-remediation” strategy. Journal of Hazardous Materials, 412, 125199.

    CAS  Google Scholar 

  • Zou, Q., Li, D., Jiang, J., Aihemaiti, A., Gao, Y., Liu, N., & Liu, J. (2019b). Geochemical simulation of the stabilization process of vanadium contaminated soil remediated with calcium oxide and ferrous sulfate. Ecotoxicology and Environmental Safety, 174, 498–505.

    CAS  Google Scholar 

  • Zou, Q., Xiang, H., Jiang, J., Li, D., Aihemaiti, A., Yan, F., & Liu, N. (2019a). Vanadium and chromium-contaminated soil remediation using VFAs derived from food waste as soil washing agents: A case study. Journal of Environmental Management, 232, 895–901.

    CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC-DDG-2022–00020) and work-study program of University of Winnipeg.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by MH. Conceptualization, supervision, and editing was done by SI. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Srimathie P. Indraratne.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate.

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haak, M.R., Indraratne, S.P. Soil amendments for vanadium remediation: a review of remediation of vanadium in soil through chemical stabilization and bioremediation. Environ Geochem Health 45, 4107–4125 (2023). https://doi.org/10.1007/s10653-023-01498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01498-8

Keywords

Navigation