Skip to main content
Log in

Using two classification schemes to develop vegetation indices of biological integrity for wetlands in West Virginia, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in “biological integrity.” These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland’s position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1–5 metrics that varied in their sensitivity to the disturbance gradient (R 2 = 0.14 − 0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcombe, C. K., Anderson, J. T., Fortney, R. H., Rentch, J. S., Grafton, W. N., & Kordek, W. S. (2005). A comparison of plant communities in mitigation and reference wetlands in the Mid-Appalachians. Wetlands, 25, 130–142.

    Article  Google Scholar 

  • Barbour, M. T., Gerritsen, J., Griffith, G. E., Frydenborg, R., McCarron, E., White, J. S., et al. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of North American Benthological Society, 13, 185–211.

    Article  Google Scholar 

  • Barbour, M. T., Stribling, J. B., & Karr, J. R. (1995). Biological assessment and criteria: Tools for water resource planning and decision making. In W. S. Davis & T. P. Simon (Eds.), Multimetric approach for establishing biocriteria and measuring biological condition (pp. 63–77). Ann Arbor: Lewis.

    Google Scholar 

  • Beltz, R. C., Bertelson, D. F., Faulkner, J. L., & May, D. M. (1992). Forest-resources of Arkansas resource bulletin SO-169. New Orleans: USDA Forest Service.

    Google Scholar 

  • Blocksom, K. A. (2003). A performance comparison of metric scoring for a multimetric index for Mid-Atlantic Highlands streams. Environmental Management, 31, 670–682.

    Article  Google Scholar 

  • Bonner, J. L., Anderson, J. T., Rentch, J. S., & Grafton, W. N. (2009). Vegetative composition and community structure associated with beaver ponds in Canaan valley, West Virginia, U.S.A. Wetlands Ecology and Management, 17(5), 543–554.

    Article  Google Scholar 

  • Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands. Technical Report WRP-DE-4, Vicksburg, U.S. Army Engineers Waterways Experiment Station.

  • Brooks, R. P., O’Connell, T. J., Wardrop, D. H., & Jackson, L. E. (1998). Towards a regional index of biological integrity: The example of forested riparian ecosystems. Environmental Monitoring and Assessment, 51, 131–143.

    Article  Google Scholar 

  • Bryce, S. A., Hughes, R. M., & Kaufman, P. R. (2002). Development of a bird integrity index: Using bird assemblages as indicators of riparian condition. Environmental Management, 30, 294–310.

    Article  Google Scholar 

  • Chipps, S. R., Hubbard, D. E., Werlin, K. B., Haugerud, N. J., Powell, K. A., Thompson, J., et al. (2006). Association between wetland disturbance and biological attributes in floodplain wetlands. Wetlands, 26, 456–467.

    Article  Google Scholar 

  • Cole, C. A., Brooks, R. P., & Wardrop, D. H. (1997). Wetland hydrology as a function of hydrogeomorphic (HGM) subclass. Wetlands, 17, 456–467.

    Article  Google Scholar 

  • Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and deepwater habitats of the United States. Report FWS/OBS-79/31, U.S. Fish and Wildlife Service.

  • Craft, C. B., & Richardson, C. J. (1997). Relationships between soil nutrients and plant species composition in Everglades peatlands. Journal of Environmental Quality, 26, 224–232.

    Article  CAS  Google Scholar 

  • Daubenmire, R. F. (1968). Plant communities: A textbook of plant synecology. New York: Harper and Row.

    Google Scholar 

  • Drohan, P. J., Ross, C. N., Anderson, J. T., Fortney, R. H., & Rentch, J. S. (2006). Soil and hydrological drivers of Typha latifolia encroachment in a marl wetland. Wetlands Ecology and Management, 14, 107–122.

    Article  Google Scholar 

  • Federal Interagency Committee for Wetland Delineation (1989). Federal manual for identifying and delineating jurisdictional wetlands. Cooperative technical publication. Washington, U.S. Army Corps of Engineers, US Environmental Protection Agency, U.S. Fish and Wildlife Service, and USDA Soil Conservation Service

  • Galatowitsch, S. M., Anderson, N. O., & Ascher, P. D. (1999). Invasiveness in wetland plants in temperate North America. Wetlands, 19, 733–755.

    Article  Google Scholar 

  • Galatowitsch, S. M., Whited, D. C., Lehtinen, R. M., Husveth, J., & Schik, K. (2000). The vegetation of wet meadows in relation to their land-use. Environmental Monitoring and Assessment, 60, 121–144.

    Article  Google Scholar 

  • Gernes, M. C., & Helgen, J. C. (2002). Indexes of Biological Integrity (IBI) for large depressional wetlands in Minnesota. St. Paul, MN: Minnesota Pollution Control Agency.

    Google Scholar 

  • Gerritsen, J., Burton, J., & Barbour, M. T. (2000). A stream condition index for West Virginia wadeable streams. Owing Mills: Tetra Techs.

    Google Scholar 

  • Hill, B. H., Herlihy, A. T., Kaufman, P. R., DeCelles, S. J., & Vander Borgh, M. A. (2003). Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecological Indicators, 2, 325–328.

    Article  CAS  Google Scholar 

  • Hughes, R. M., Kaufmann, P. R., Herlihy, A. T., Kincaid, T. M., Reynolds, L., & Larsen, D. P. (1998). A process for developing and evaluating indices of fish assemblage integrity. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1618–1631.

    Article  Google Scholar 

  • Jackson, S., & Davis, W. S. (1994). Meeting the goal of biological integrity in water-resource programs of the U.S. Environmental Protection Agency. Journal of North American Benthological Society, 13, 592–597.

    Article  Google Scholar 

  • Kercher, S. M., & Zedler, J. B. (2004). Multiple disturbances accelerate invasion of reed canary grass (Phalaris arundinacea) in mesocosm study. Oecologia, 138, 455–464.

    Article  Google Scholar 

  • Kirkman, L. K., Goebel, P. C., West, L., Drew, M. B., & Palik, B. J. (2000). Depressional wetland vegetation types: A question of plant community development. Wetlands, 20, 373–385.

    Article  Google Scholar 

  • Koning, C. O. (2005). Vegetation patterns resulting from spatial and temporal variability in hydrology, soils, and trampling in an isolated basin marsh, New Hampshire, U.S.A. Wetlands, 25, 239–251.

    Article  Google Scholar 

  • Lopez, R. D., & Fennessy, M. S. (2002). Testing the floristic quality assessment index as an indicator of wetland condition. Ecological Applications, 12, 487–497.

    Article  Google Scholar 

  • Mack, J. J. (2001). Ohio rapid assessment method for Wetlands v. 5.0. User’s manual and scoring forms. Columbus, Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Unit.

  • Mack, J. J. (2004). Integrated wetland assessment program. Part 9: Field manual for the Vegetation Index of Biotic Integrity for Wetlands v. 1.3. Columbus: Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water.

    Google Scholar 

  • Magee, T. K., & Kentula, M. E. (2005). Response of wetland plant species to hydrologic conditions. Wetlands Ecology and Management, 13, 163–181.

    Article  Google Scholar 

  • Mahaney, W. M., Wardrop, D. H., & Brooks, R. P. (2004a). Impacts of sedimentation and nitrogen enrichment on wetland plant community development. Plant Ecology, 175, 227–243.

    Article  Google Scholar 

  • Mahaney, W. M., Wardrop, D. H., & Brooks, R. P. (2004b). Impacts of stressors on the emergence and growth of wetland plant species in Pennsylvania, U.S.A. Wetlands, 24, 538–549.

    Article  Google Scholar 

  • Maxted, J. R., Barbour, M. T., Gerritsen, J., Poretti, V., Primrose, N., Silvia, A., et al. (2000). Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. Journal of North American Benthological Society, 19(1), 128–144.

    Article  Google Scholar 

  • McCormick, F. H., Hughes, R. M., Kaufman, P. R., Peck, D. V., Stoddard, J. L., & Herlihy, A. T. (2001). Development of an index of biotic integrity for the Mid-Atlantic Highlands region. Transactions of the American Fisheries Society, 130, 857–877.

    Article  Google Scholar 

  • Miller, S. J., & Wardrop, D. H. (2006). Adapting the floristic quality assessment index to indicate anthropogenic disturbance in central Pennsylvania wetlands. Ecological Indicators, 6, 313–326.

    Article  Google Scholar 

  • Miller, S. J., Wardrop, D. H., Mahaney, W. M., & Brooks, R. P. (2006). A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania. Ecological Indicators, 6, 290–312.

    Article  Google Scholar 

  • Nichols, J. D., Perry, J. E., & DeBerry, D. A. (2006). Using a floristic quality assessment technique to evaluate plant community integrity of forested wetlands in Southeastern Virginia. Natural Areas Journal, 26, 360–639.

    Article  Google Scholar 

  • O’Connell, T. J., Jackson, L. E., & Brooks, R. P. (1998). A bird community index of biotic integrity for the Mid-Atlantic highlands. Environmental Monitoring and Assessment, 51, 145–156.

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125.

    Article  Google Scholar 

  • Omernik, J. M. (1995). Ecoregions: A spatial framework for environmental management. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: Tools for water resource planning and decision making. Boca Raton: Lewis.

    Google Scholar 

  • Planty-Tabacchi, A., Tabacchi, E., Naiman, R. J., Deferrari, C., & Decamps, H. (1996). Invasibility of species-rich communities in riparian areas. Conservation Biology, 10, 598–607.

    Article  Google Scholar 

  • Reiss, K. C. (2006). Florida wetland condition index for depressional forested wetlands. Ecological Indicators, 6, 337–352.

    Article  Google Scholar 

  • Rentch, J. S., & Anderson, J. T. (2006). A floristic quality index for West Virginia wetland and riparian plant communities. Morgantown: West Virginia Agricultural & Forestry Experiment Station.

    Google Scholar 

  • Rentch, J. S., Anderson, J. T., Lamont, S., Sencindiver, J., & Eli, R. (2008). Vegetation along hydrologic, edaphic, and geochemical gradients in a high-elevation poor fen in Canaan Valley, West Virginia. Wetlands Ecology and Management, 16, 237–253.

    Article  Google Scholar 

  • Smith, R. L. (1996). Ecology and field biology, 5th Edn. New York: HarperCollins.

    Google Scholar 

  • Robertson, P. A., Weaver, G. T., & Cavanaugh, J. A. (1978). Vegetation and tree species patterns near the Northern Terminus of the Southern floodplain forest. Ecological Monographs, 48(3), 249–267.

    Article  Google Scholar 

  • Stevenson, R. J., & Hauer, F. R. (2002). Integrating hydrogeomorphic and index of biotic integrity approaches for environmental assessment of wetlands. Journal of North American Benthological Society, 21, 502–513.

    Article  Google Scholar 

  • Tiner, R. (1999). Wetland indicators: A guide to wetland identification, delineation, and mapping. Boca Raton: Lewis.

    Book  Google Scholar 

  • USACOE (1987). Corps of engineers wetlands delineation manual. Washington: U.S. Army Corps of Engineers.

    Google Scholar 

  • Veselka, W. (2008). Developing volunteer-driven indices of biological integrity. M.S. thesis, West Virginia University, Morgantown.

  • Veselka, W., Anderson, J. T., & Kordek, W. (2009). Using dual classifications in the development of avian wetland indices of biological integrity for wetlands in West Virginia, U.S.A. Environmental Monitoring and Assessment. doi:10.1007/s10661-009-0911-z.

    Google Scholar 

  • Woods, A. J., Omernik, J. M., & Brown, D. D. (1999). Level III and IV ecoregions of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia. Corvallis, OR: U.S. Environmental Protection Agency.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Anderson.

Additional information

W.N. Grafton passed away 11 September 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselka, W., Rentch, J.S., Grafton, W.N. et al. Using two classification schemes to develop vegetation indices of biological integrity for wetlands in West Virginia, USA. Environ Monit Assess 170, 555–569 (2010). https://doi.org/10.1007/s10661-009-1257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1257-2

Keywords

Navigation