Skip to main content

Advertisement

Log in

Temporal evolution of the main processes that control indoor pollution in an office microenvironment: a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study is to examine the relative contribution of the outdoor concentration, the ventilation rate, the geometric characteristics of the indoor environment (i.e., extent of indoor surfaces and indoor volume), the deposition, and chemical reactions to the indoor air quality of the office microenvironment. For this case study, the NO, NO2, and O3 concentrations indoors and outdoors and TVOCs and CO2 concentrations indoors were measured in an office microenvironment in Athens, Greece, that was ventilated both naturally and mechanically. The calculated ventilation and loss rates and the measured outdoor concentrations of NO, NO2, and O3 were set as input to Multi-chamber Indoor Air Quality Model in order to study the temporal variation of the indoor NO, NO2, and O3 concentrations. Results showed that when the ventilation rate and outdoor concentration are high, the relative contribution of the transport process contributes significantly, while the chemical process depends on the contemporary interplay between the indoor O3, NO, and NO2 concentrations and lighting levels. The significance of each process was further examined by performing sensitivity tests, and it was found that the most important parameters were the deposition velocities, the UV infiltration rates (which determines the indoor chemical reaction rates), the ventilation rates, and the filtration (when a mechanical ventilation system is used). The effect of the hydrocarbon chemistry was not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, F. (Ed.) (1998). Natural Ventilation in Buildings: A design handbook. London: James and James (Science).

    Google Scholar 

  • Baek, S. O., Kim, Y. S., & Perry, R. (1997). Indor air quality in homes, offices and restaurants in Korean Urban areas—Indoor/outdoor relationships. Atmospheric Environment, 31(4), 529–544.

    Article  CAS  Google Scholar 

  • Bartlett, K. H., Martinez, M., & Bert, J. (2004). Modelling of occupant-generated CO2 dynamics in naturally ventilated classrooms. Journal of Occupational and Environmental Hygiene, 1, 139–148.

    CAS  Google Scholar 

  • Brimblecombe, P., & Cashmore, M. (2004). Indoor air pollution. Journal de Physique. IV: JP, 121, 209–221. doi:10.1051/jp4:2004121014.

    Article  CAS  Google Scholar 

  • Carslaw, N. (2007). A new detailed chemical model for indoor air pollution. Atmospheric Environment, 41(6), 1164–1179. doi:10.1016/j.atmosenv.2006.09.038.

    Article  CAS  Google Scholar 

  • Chan, A. T. (2001). Indor–Outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions. Atmospheric Environment, 36(9), 1453–1551.

    Google Scholar 

  • Coleman, B. K., Destaillats, H., Hodgson, A. T., & Nazaroff, W. W. (2008). Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmospheric Environment, 42, 642–654. doi:10.1016/j.atmosenv.2007.10.001.

    Article  CAS  Google Scholar 

  • Dodson, R. E., Levy, J. I., Shine, J. P., Spengler, J. D., & Bennett, D. H. (2007). Multi-zonal air flow rates in residences in Boston, Massachusetts. Atmospheric Environment, 41(17), 3722–3727. doi:10.1016/j.atmosenv.2007.01.035.

    Article  CAS  Google Scholar 

  • Drakou, G., Zerefos, C., Ziomas, I., & Voyatzaki, M. (1998). Measurements and numerical simulations of indoor O-3 and NOx in two different cases. Atmospheric Environment, 32(4), 595–610. doi:10.1016/S1352-2310(97)00335-X.

    Article  CAS  Google Scholar 

  • Drakou, G., Zerefos, C., Ziomas, I., & Ganitis, V. (2000a). Numerical simulation of indoor air pollution levels in a church and in a museum in Greece. Studies in Conservation, 45(2), 85–94. doi:10.2307/1506666.

    Article  CAS  Google Scholar 

  • Drakou, G., Zerefos, C., & Ziomas, I. (2000b). Sensitivity study of parameters in the Nazaroff-Cass IAQ model with respect to indoor concentrations of O3, NO, NO2. Environmental Technology, 21, 483–503. doi:10.1080/09593332108618095.

    CAS  Google Scholar 

  • Ekberg, L. (1995). Concentrations of NO2 and other traffic related contaminants in office buildings located in urban environments. Building and Environment, 30(2), 293–298. doi:10.1016/0360-1323(94)00040-Y.

    Article  Google Scholar 

  • Emmerich, S., et al. (2004). Air and pollutant transport from attached garages to residential living spaces—Literature review and field tests. International Journal of Ventilation, 2, 265–276.

    Google Scholar 

  • Freijer, J. I., & Bloemen, H. J. T. (2000). Modelling relationships between indoor and outdoor air quality. Journal of the Air & Waste Management Association, 50(2), 292–300.

    CAS  Google Scholar 

  • Godwin, C. C., Batterman, S. A., Sahni, S. P., & Peng, C. Y. (2003). Indoor environment quality in dental clinics: Potential concerns from particulate matter. American Journal of Dentistry, 16(4), 260–266.

    Google Scholar 

  • Gokhale, S., & Pandian, S. (2007). A semi-empirical box modeling approach for predicting the carbon monoxide concentrations at an urban traffic intersection. Atmospheric Environment, 41(36), 7940–7950. doi:10.1016/j.atmosenv.2007.06.065.

    Article  CAS  Google Scholar 

  • Grøntoft, T., & Raychaudhuri, M. R. (2004). Compilation of tables of surface deposition velocities for O3, NO2 and SO2 to a range of indoor surfaces. Atmospheric Environment, 38(4), 533–544. doi:10.1016/j.atmosenv.2003.10.010.

    Article  Google Scholar 

  • Halios, C. H., & Helmis, C. G. (2007). On the estimation of characteristic indoor air quality parameters using analytical and numerical methods. The Science of the Total Environment, 381(1–3), 222–232. doi:10.1016/j.scitotenv.2007.03.012.

    CAS  Google Scholar 

  • Halios, C. H., Helmis, C. G., Deligianni, K., Vratolis, S., & Eleftheriadis, K. (2009). On the determination of ventilation rates from routine indoor-air measurements: An application for the estimation of particle loss rates. 11th Conference on Environmental Science and Technology To be held at Chania, Crete, 3–5/9 2009.

  • Hayes, S. R. (1991). Use of an indoor air quality model (IAQM) to estimate indoor ozone levels. Journal of the Air & Waste Management Association, 41(2), 161–170.

    CAS  Google Scholar 

  • Helmis, C. G., Tzoutzas, J., Flocas, H. A., Halios, C. H., Stathopoulou, O. I., Assimakopoulos, V. D., et al. (2007). Indoor air quality in a dentistry clinic. The Science of the Total Environment, 377(2–3), 349–365. doi:10.1016/j.scitotenv.2007.01.100.

    CAS  Google Scholar 

  • Howard-Reed, C., Wallace, L., & Emmerich, S. (2003). Deposition rates of fine and coarse particles in residential buildings literature review and measurements in an occupied townhouse NISTIR 7068.

  • Hussein, T., Hameri, K., Heikkinen, M. A., & Kulmala, M. (2005). Indoor and outdoor particle size characterization at a family house in Espoo—Finland. Atmospheric Environment, 39, 3697–3709. doi:10.1016/j.atmosenv.2005.03.011.

    Article  CAS  Google Scholar 

  • Hyttinen, M., Pasanen, P., Salo, J., Bjorkroth, M., Vartiainen, M., & Kalliokoski, P. (2003). Reactions of ozone on ventilation filters. Indoor and Built Environment, 12, 151–158. doi:10.1177/1420326X03012003002.

    Article  CAS  Google Scholar 

  • Jamriska, M., & Morawska, L. (2003). Quantitative assessment of the effect of surface deposition and coagulation on the dynamics of submicrometer particles indoors. Aerosol Science and Technology, 37(5), 425–436. doi:10.1080/02786820300975.

    Article  CAS  Google Scholar 

  • Kousa, A., Monn, C., Rotko, T., Alm, S., Oglesby, L., & Jantunen, M. J. (2001). Personal exposures to NO2 in the EXPOLIS-study: Relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmospheric Environment, 35(20), 3405–3412. doi:10.1016/S1352-2310(01)00131-5.

    Article  CAS  Google Scholar 

  • Liao, S. S. T., Bacon-Shone, J., & Kim, Y. -S. (1991). Factors influencing indoor air quality in Hong Kong: Measurements in offices and shops. Environmental Technology, 12, 737–745. doi:10.1080/09593339109385065.

    Article  CAS  Google Scholar 

  • Matson, U. (2005). Comparison of the modelling and experimental results on concentrations of ultra-fine particles indoors. Building and Environment, 40, 996–1002. doi:10.1016/j.buildenv.2004.09.001.

    Article  Google Scholar 

  • Monn, C. (2001). Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmospheric Environment, 35, 1–32. doi:10.1016/S1352-2310(00)00330-7.

    Article  CAS  Google Scholar 

  • Morrison, G. C., & Wiseman, D. J. (2005). Temporal considerations in the measurement of indoor mass-transfer coefficients. Atmospheric Environment, 40(20), 3677–3685. doi:10.1016/j.atmosenv.2006.03.015.

    Article  Google Scholar 

  • Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14(Suppl. 7), 175–183. doi:10.1111/j.1600-0668.2004.00286.x.

    Article  Google Scholar 

  • Nazaroff, W. W., & Cass, G. R. (1986). Mathematical modelling of chemically reacting pollutants in indoor air. Environmental Science & Technology, 20(9), 924–934. doi:10.1021/es00151a012.

    Article  CAS  Google Scholar 

  • Nazaroff, W. W., & Cass, G. R. (1989). Mathematical modelling of indoor aerosol dynamics. Environmental Science & Technology, 24, 66–67. doi:10.1021/es00071a006.

    Article  Google Scholar 

  • O’Connor, G. T., Neas, L., Vaughn, B., Kattan, M., Mitchell, H., Crain, E. F., et al. (2008). Acute respiratory health effects of air pollution on children with asthma in US inner cities. The Journal of Allergy and Clinical Immunology, 121(5), 1133–1139. doi:10.1016/j.jaci.2008.02.020.

    Article  Google Scholar 

  • Pandrangi, L., & Morrison, G. C. (2008). Ozone interactions with human hair: Ozone uptake rates and product formation. Atmospheric Environment, 42, 5079–5089. doi:10.1016/j.atmosenv.2008.02.009.

    Article  CAS  Google Scholar 

  • Persily, A., Howard-Reed, C., & Nabinger, S. J. (2003). Transient analysis of volatile organic compound concentrations for estimating emission rates. Atmospheric Environment, 37(39–40), 5505–5516. doi:10.1016/j.atmosenv.2003.09.027.

    Article  CAS  Google Scholar 

  • Phillips, J. L., Field, R., Goldstone, M., Reynolds, G. L., Lester, J. N., & Perry, R. (1993). Relationships between indoor and outdoor air quality in four naturally ventilated offices in the United Kingdom. Atmospheric Environment, 27A(11), 1743–1753.

    CAS  Google Scholar 

  • Rae Systems Application Note AP-226 (2008). Accessed at www.rae.nl (last accessed 16-7/2008)

  • Russell, A. G., & Cass, G. R. (1985). Verification of a mathematical model for aerosol nitrate and nitric acid formation and its use for control measure evaluation. Atmospheric Environment, 20(10), 2011–2025.

    Google Scholar 

  • Sarwar, G., Corsi, R., Kimura, Y., Allen, D., & Weschler, C. J. (2002). Hydroxyl radicals in indoor environments. Atmospheric Environment, 36, 3973–3988. doi:10.1016/S1352-2310(02)00278-9.

    Article  CAS  Google Scholar 

  • Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29(13), 1487–1497. doi:10.1016/1352-2310(95)00016-R.

    Article  CAS  Google Scholar 

  • Tham, K. W., Zuraimi, M. S., & Sekhar, S. C. (2004). Emission modelling and validation of VOCs’ source strengths in air-conditioned office premises. Environment International, 30(8), 1075–1088. doi:10.1016/j.envint.2004.06.001.

    Article  CAS  Google Scholar 

  • Weschler, C. J., & Shields, H. C. (1997). Potential reactions among indoor pollutants. Atmospheric Environment, 31(21), 3487–3495. doi:10.1016/S1352-2310(97)00219-7.

    Article  Google Scholar 

  • Weschler, C. J., Shields, H. C., & Naik, D. V. (1989). Indoor ozone exposures. Journal of the Air & Waste Management Association, 39(12), 1562–1568.

    CAS  Google Scholar 

  • Weschler, C. J., Shields, H. C., & Naik, D. V. (1994). Indoor Chemistry involving O3, NO and NO2 as evidenced by 14 months of measurements at a site in Southern California. Environmental Science & Technology, 28, 2120–2132. doi:10.1021/es00061a021.

    Article  CAS  Google Scholar 

  • Weschler, C. J., Wisthaler, A., Cowlin, S., Tamαs, G., Strψm-Tejsen, P., Hodgson, A. T., et al. (2007). Ozone initiated chemistry in an occupied simulated aircraft cabin. Environmental Science & Technology, 41, 6177–6184. doi:10.1021/es0708520.

    Article  CAS  Google Scholar 

  • World Health Organization (Regional Office for Europe. Copenhagen) (2000). Air Quality Guidelines for Europe. WHO Regional Publications, European Series, No91.

  • Willmott, C. J. (1982). Some comments on the evaluation of the model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313. doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

    Article  Google Scholar 

  • Yang, W., Lee, K., & Chung, M. (2004). Characterization of indoor air quality using multiple measurements of nitrogen dioxide. Indoor Air, 14, 105–111. doi:10.1046/j.1600-0668.2003.00216.x.

    Article  CAS  Google Scholar 

  • Zhang, J., & Lioy, P. (1994). Ozone in residential air: Concentrations, I/O ratios, indoor chemistry, and exposures. Indoor Air, 4, 95–105. doi:10.1111/j.1600-0668.1994.t01-2-00004.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos H. Halios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halios, C.H., Helmis, C.G. Temporal evolution of the main processes that control indoor pollution in an office microenvironment: a case study. Environ Monit Assess 167, 199–217 (2010). https://doi.org/10.1007/s10661-009-1043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1043-1

Keywords

Navigation