Skip to main content

Ventilative Cooling and Air Pollutants

  • Chapter
  • First Online:
Innovations in Ventilative Cooling

Abstract

The majority of office and other non‑domestic buildings use mechanical cooling and ventilation, even when an optimized natural ventilation (NV) system could meet cooling and fresh air requirements. However, in most large cities, the outdoor environment is contaminated with a combination of noise, fine particles, heat and toxic gases. This contaminated environment has a detrimental impact on naturally ventilated buildings due to their lack of filtration and outdoor noise attenuation systems. This chapter presents a numerical analysis of the effect of fine particle pollution (PM2.5) on the NV potential of office buildings in California, Europe and Asia. Several years of measured weather and PM2.5 concentration data were used to perform dynamic thermal and airflow simulation analysis. Detailed simulation results show that a hybrid NV system can reduce the air‑conditioning and ventilation electricity consumption of a well‑designed office building by up to 83% (which can be increased to up to 93% by the availability of personal comfort systems), in comparison to an office using, during all working hours, a mechanical cooling and ventilation system equipped with a high‑efficiency particle filter. Unfortunately, in this hybrid approach, high levels of outdoor PM2.5 penetrate the indoor environment, increasing occupant cumulative exposure by up to six times. To overcome this problem, two exposure control approaches were tested. Using NV only during moments of low outdoor PM2.5 concentrations limits the exposure increase to up to three times but at the cost of reducing energy savings. Equipping NV openings with an electrostatic filter would result in a similar exposure reduction, but at a very low energy cost, taking full advantage of NV’s saving potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations Department of Economic and Social Affairs (2014) World Urbanization Prospects—The 2014 Revision—Highlights, United Nations, New York, New York, US. ISBN 978 92 1 151517 6, https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf

  2. Baklanov A, Molina LT, Gauss M (2016) Megacities, air quality and climate. Atmos Environ 126:235–249. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2015.11.059

  3. Chen C, Zhao B (2011) Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos Environ 45(2):275–288. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2010.09.048

  4. Habre R, Coull B, Moshier E, Godbold J, Grunin A, Nath A, Castro W, Schachter N, Rohr A, Kattan M, Spengler J, Koutrakis P (2014) Sources of indoor air pollution in New York City residences of asthmatic children. J Expo Sci Environ Epidemiol 24(3):269–278. ISSN 1559 0631, https://doi.org/10.1038/jes.2013.74

  5. Chwieduk DA (2017) Towards modern options of energy conservation in buildings. Renew Energy 101:1194–1202. ISSN 0960 1481, https://doi.org/10.1016/j.renene.2016.09.061

  6. Rupp RF, Vásquez NG, Lamberts R (2015) A review of human thermal comfort in the built environment. Energy Build 105:178–205. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2015.07.047

  7. Perez IO, Østergaard PA (2014) Potential of natural ventilation in temperate countries—a case study of Denmark. Appl Energy 114:520–530. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2013.10.008

    Article  Google Scholar 

  8. Perez IO, Østergaard PA (2014) Energy saving potential of utilizing natural ventilation under warm conditions—a case study of Mexico. Appl Energy 130:20–2619. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2014.05.035

    Article  Google Scholar 

  9. da Graça GC, Martins NR, Horta CS (2012) Thermal and airflow simulation of a naturally ventilated shopping mall. Energy Build 50:177–188. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2012.03.037

  10. Santamouris M (2016) Cooling the buildings—past, present and future. Energy Build 128:617–638. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2016.07.034

    Article  Google Scholar 

  11. Ramponi R, Angelotti A, Blocken B (2014) Energy saving potential of night ventilation: sensitivity to pressure coefficients for different European climates. Appl Energy 123:185–195. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2014.02.041

    Article  Google Scholar 

  12. Hughes BR, Calautit JK, Ghani SA (2012) The development of commercial wind towers for natural ventilation: a review. Appl Energy 92:606–627. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2011.11.066

    Article  Google Scholar 

  13. Seppänen O, Fisk WJ (2002) Association of ventilation system type with SBS symptoms in office workers. Indoor Air 12(2):98–112. ISSN 1600 0668, https://doi.org/10.1034/j.1600-0668.2002.01111.x

  14. Dutton SM, Banks D, Brunswick SL, Fisk WJ (2013) Health and economic implications of natural ventilation in California offices. Build Environ 67:34–45. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2013.05.002

    Article  Google Scholar 

  15. Li C, Hong T, Yan D (2014) An insight into actual energy use and its drivers in high performance buildings. Appl Energy 131:394–410. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2014.06.032

    Article  Google Scholar 

  16. Tong Z, Chen Y, Malkawi A, Liu Z, Freeman RB (2016) Energy saving potential of natural ventilation in China: the impact of ambient air pollution. Appl Energy 179:660–668. https://doi.org/10.1016/j.apenergy.2016.07.019

    Article  Google Scholar 

  17. Lave LB, Seskin EP (1970) Air pollution and human health. Science 169(3947):723–733. ISSN 1095 9203, https://doi.org/10.1126/science.169.3947.723

  18. Ferris Jr BG, Speizer FE, Spengler JD, Dockery D, Bishop YMM, Wolfson M, Humble C (1979) Effects of Sulfur Oxides and respirable particles on human health. methodology and demography of populations in study. Am Rev Respir Dis 120(4):767–779. ISSN 0003 0805, https://www.atsjournals.org/doi/abs/10.1164/arrd.1979.120.4.767

  19. World Health Organization (2013) Review of evidence on health aspects of air pollution—REVIHAAP project: Technical Report, WHO Regional Office for Europe, Copenhagen, Denmark. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf

  20. Thatcher TL, Lai Alvin CK, Jackson RM, Sextro RG, Nazaroff WW (2002) Effects of room furnishings and air speed on particle deposition rates indoors. Atmos Environ 36(11):1811–1819. ISSN 1352 2310, https://doi.org/10.1016/S1352-2310(02)00157-7

    Article  Google Scholar 

  21. Meng J, Liu J, Guo S, Huang Y, Tao S (2016) The impact of domestic and foreign trade on energy related PM emissions in Beijing. Appl Energy 184:853–862. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2015.09.082

    Article  Google Scholar 

  22. Farrell WJ, Cavellin LD, Weichenthal S, Goldberg M, Hatzopoulou M (2015) Capturing the urban canyon effect on particle number concentrations across a large road network using spatial analysis tools. Build Environ 92:328–334. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.05.004

    Article  Google Scholar 

  23. Popa ME, Segers AJ, van der Gon HACD, Krol MC, Visschedijk AJH, Schaap M, Röckmann T (2015) Impact of a future H2 transportation on atmospheric pollution in Europe. Atmos Environ 113:208–222. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2015.03.022

    Article  Google Scholar 

  24. Westphalen D, Koszalinski S (1999) Energy consumption characteristics of commercial building HVAC systems—Volume II: thermal distribution, auxiliary equipment, and ventilation, office of building equipment, office of building technology state and community programs, US Department of Energy, Oct 1999. https://www1.eere.energy.gov/buildings/publications/pdfs/commercial_initiative/hvac_volume2_final_report.pdf

  25. Azimi P, Zhao D, Stephens B (2014) Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. Atmos Environ 98:337–346. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2014.09.007

    Article  Google Scholar 

  26. Lombard LP, Ortiz J, Christine Pout A (2008) Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. Energy Build 40(3):394–398. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  27. Danny Harvey LD (2013) Recent advances in sustainable buildings: review of the energy and cost performance of the state of the art best practices from around the world. Ann Rev Environ Res 38:281–309. ISSN 1543 5938, https://doi.org/10.1146/annurev-environ-070312-101940

  28. Herkel S, Knapp U, Pfafferott J (2008) Towards a model of user behaviour regarding the manual control of windows in office buildings. Build Environ 0360:1323. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2006.06.031

    Article  Google Scholar 

  29. International Organization for Standardization (2005) ISO 7730:2005—Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Nov 2005

    Google Scholar 

  30. Zhang H, Arens E, Zhai Y (2015) A review of the corrective power of personal comfort systems in non neutral ambient environments. Build Environ 91:15–41. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.03.013

  31. Zhai Y, Zhang Y, Zhang H, Pasut W, Arens E, Meng Q (2015) Human comfort and perceived air quality in warm and humid environments with ceiling fans. Build Environ 0360:1323. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.04.003

    Article  Google Scholar 

  32. Watanabe S, Shimomura T, Miyazaki H (2009) Thermal evaluation of a chair with fans as an individually controlled system. Build Environ 0360:1323. https://doi.org/10.1016/j.buildenv.2008.05.016

    Article  Google Scholar 

  33. Pallubinsky H, Schellen L, Rieswijk TA, Breukel CMGAM, Kingma BRM, van Marken Lichtenbelt WD (2016) Local cooling in a warm environment. Energy Build 113:15–22. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2015.12.016

    Article  Google Scholar 

  34. Pasut W, Zhang H, Arens ED, Zhai Y (2015) Energy efficient comfort with a heated/cooled chair: results from human subject tests. Build Environ 84:10–21. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2014.10.026

  35. Martins NR, da Graça GC (2008) Impact of PM2.5 in indoor urban environments: a review. Sustain Cities Soc 42:259–275. ISSN 2210 6707, https://doi.org/10.1016/j.scs.2018.07.011

  36. Chen C, Zhao B, Zhou W, Jiang X, Tan Z (2012) A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Build Environ 47:339–348. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2011.07.004

    Article  Google Scholar 

  37. Shen G, Xue M, Chen Y, Yang C, Li W, Shen H, Huang Y, Zhang Y, Chen H, Zhu Y, Haisuo W, Ding A, Tao S (2014) Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves. Atmos Environ 89:337–345. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2014.01.033

    Article  Google Scholar 

  38. Shan M, Wang P, Li J, Yue G, Yang X (2015) Energy and environment in Chinese rural buildings: situations, challenges, and intervention strategies. Build Environ 91:271–282. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.03.016

    Article  Google Scholar 

  39. Li T, Cao S, Fan D, Zhang Y, Wang B, Zhao X, Leaderer BP, Shen G, Zhang Y, Duan X (2016) Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels. Sci Total Environ 548–546:6–12. ISSN 0048 9697, https://doi.org/10.1016/j.scitotenv.2016.01.038

    Article  Google Scholar 

  40. Northcross AL, Katharine Hammond S, Canuz E, Smith KR (2012) Dioxin inhalation doses from wood combustion in indoor cookfires. Atmos Environ 49:415–418. https://doi.org/10.1016/j.atmosenv.2011.11.054

    Article  Google Scholar 

  41. Canha N, Almeida SM, do Carmo Freitas M, Wolterbeek HT, Cardoso J, Pio C, Caseiro A (2014) Impact of wood burning on indoor PM2.5 in a primary school in rural Portugal. Atmos Environ 94, 663–670. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2014.05.080

  42. Yue X, Wang Y, Chen Y, Tian C, Feng Y, Li J, Zhang G (2016) Characterization of fine and carbonaceous particles emissions from pelletized biomass coal blends combustion: Implications on residential crop residue utilization in China. Atmos Environ 141:312–319. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2016.06.073

    Article  Google Scholar 

  43. Huboyo HS, Tohno S, Lestari P, Mizohata A, Okumura M (2014) Characteristics of indoor air pollution in rural mountainous and rural coastal communities in Indonesia. Atmos Environ 82:343–350. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2013.10.044

    Article  Google Scholar 

  44. Pokhrel AK, Bates MN, Acharya J, Branth PV, Chandyo RK, Shrestha PS, Raut AK, Smith KR (2015) PM2.5 in household kitchens of Bhaktapur, Nepal, using four different cooking fuels. Atmos Environ 113:159–168. https://doi.org/10.1016/j.atmosenv.2015.04.060

    Article  Google Scholar 

  45. Huang W, Baumgartner J, Zhang Y, Wang Y, Schauer JJ (2015) Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels. Atmos Environ 104:79–87. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2014.12.066

    Article  Google Scholar 

  46. World Health Organization (2005) Air Quality Guidelines—Global Update 2005: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide, WHO Regional Office for Europe, 2006, Copenhagen, Denmark. ISBN 92 890 2192 6, http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf

  47. Bennett D, Wu X, Trout A, Apte M, Faulkner D, Maddalena R, Sullivan D (2011) Indoor environmental quality and heating, ventilating and air conditioning survey of small and medium size commercial buildings—Field study, California Energy Commission & California Air Resources Board, Oct 2011, CEC 500 2011 043. http://www.energy.ca.gov/2011publications/CEC-500-2011-043/CEC-500-2011-043.pdf

  48. Goyal R, Kumar P (2013) Indoor–outdoor concentrations of particulate matter in nine microenvironments of a mix use commercial building in megacity Delhi. Air Qual Atmos Health 6(4):747–757. ISSN 1873 9326, https://doi.org/10.1007/s11869-013-0212-0

    Article  MathSciNet  Google Scholar 

  49. Yassin MF, Al Thaqeb BEY, Al Mutiri EAE (2012) Assessment of indoor PM2.5 in different residential environments. Atmos Environ 56:65–68. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2012.03.051

  50. See SW, Balasubramanian R (2011) Characterization of fine particle emissions from incense burning. Build Environ 46(5):1074–1080. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2010.11.006

    Article  Google Scholar 

  51. Kuo SC, Tsai YI, Sopajaree K (2015) Emission identification and health risk potential of allergy causing fragrant substances in PM2.5 from incense burning. Build Environ 87:23–33. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.01.012

    Article  Google Scholar 

  52. Höllbacher E, Ters T, Gradinger CR, Srebotnik E (2017) Emissions of indoor air pollutants from six user scenarios in a model room. Atmos Environ 150:389–394. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2016.11.033

    Article  Google Scholar 

  53. Quang TN, He C, Morawska L, Knibbs LD (2013) Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmos Environ 79:41–52. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2013.06.009

    Article  Google Scholar 

  54. Dorizas PV, Assimakopoulos MN, Helmis C, Santamouris M (2015) An integrated evaluation study of the ventilation rate, the exposure and the indoor air quality in naturally ventilated classrooms in the Mediterranean region during spring. Sci Total Environ 502:557–570. ISSN 0048 9697, https://doi.org/10.1016/j.scitotenv.2014.09.060

  55. Stabile L, Fuoco FC, Buonanno G (2012) Characteristics of particles and black carbon emitted by combustion of incenses, candles and anti mosquito products. Build Environ 56:184–191. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2012.03.005

    Article  Google Scholar 

  56. Wang X, Bi X, Chen D, Sheng G, Jiamo F (2006) Hospital indoor respirable particles and carbonaceous composition. Build Environ 41(8):992–1000. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2005.04.024

    Article  Google Scholar 

  57. Goldasteh I, Tian Y, Ahmadi G, Ferro AR (2014) Human induced flow field and resultant particle resuspension and transport during gait cycle. Build Environ 77:101–109. ISSN 0360 1323. https://doi.org/10.1016/j.buildenv.2014.03.016

    Article  Google Scholar 

  58. Serfozo N, Chatoutsidou SE, Lazaridis M (2014) The effect of particle resuspension during walking activity to PM10 mass and number concentrations in an indoor microenvironment. Build Environ 82:180–189. ISSN 0360 1323. https://doi.org/10.1016/j.buildenv.2014.08.017

    Article  Google Scholar 

  59. Elbayoumi M, Ramli NA, Yusof NFFM (2015) Spatial and temporal variations in particulate matter concentrations in twelve schools environment in urban and overpopulated camps landscape. Build Environ 90:157–167. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.03.036

    Article  Google Scholar 

  60. Wang F, Meng D, Li X, Tan J (2016) Indoor outdoor relationships of PM2.5 in four residential dwellings in winter in the Yangtze River Delta, China. Environ Pollut 215:280–289. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2016.05.023

    Article  Google Scholar 

  61. Amato F, Rivas I, Viana M, Moreno T, Bouso L, Reche C, Àlvarez Pedrerol M, Alastuey A, Sunyer J, Querol X (2014) Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci Total Environ 490:757–765. ISSN 0048 9697, https://doi.org/10.1016/j.scitotenv.2014.05.051

    Article  Google Scholar 

  62. Sajani SZ, Ricciardelli I, Trentini A, Bacco D, Maccone C, Castellazzi S, Lauriola P, Poluzzi V, Harrison RM (2015) Spatial and indoor, outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components. Atmos Environ 103:307–320. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2014.12.064

    Article  Google Scholar 

  63. Razali NYY, Latif MT, Dominick D, Mohamad N, Sulaiman FR, Srithawirat T (2015) Concentration of particulate matter, CO and CO2 in selected schools in Malaysia. Build Environ 87:108–116. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.01.015

    Article  Google Scholar 

  64. Morawska L, He C, Hitchins J, Gilbert D, Parappukkaran S (2001) The relationship between indoor and outdoor airborne particles in the residential environment. Atmos Environ 35(20):3463–3473. ISSN 1352 2310, https://doi.org/10.1016/S1352-2310(01)00097-8

    Article  Google Scholar 

  65. Ní Riain CM, Mark D, Davies M, Harrison RM, Byrne MA (2003) Averaging periods for indoor–outdoor ratios of pollution in naturally ventilated non domestic buildings near a busy road. Atmos Environ 37(29):4121–4132. ISSN 1352 2310, https://doi.org/10.1016/S1352-2310(03)00509-0

    Article  Google Scholar 

  66. Wang Y, Chen C, Wang P, Wan Y, Chen Z, Zhao L (2015) Experimental Investigation on indoor, outdoor PM2.5 concentrations of an office building located in Guangzhou. Procedia Eng 121:333–340. ISSN 1877 7058, https://doi.org/10.1016/j.proeng.2015.08.1076

    Article  Google Scholar 

  67. Sangiorgi G, Ferrero L, Ferrini BS, Lo Porto C, Perrone MG, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E (2013) Indoor airborne particle sources and semi volatile partitioning effect of outdoor fine PM in offices. Atmos Environ 65:205–214. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2012.10.050

    Article  Google Scholar 

  68. Zhou Z, Liu Y, Yuan J, Zuo J, Chen G, Linyu X, Rameezdeen R (2016) Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: a case study in Tianjin, China. Renew Sustain Energy Rev 64:372–381. ISSN 1364 0321, https://doi.org/10.1016/j.rser.2016.06.018

    Article  Google Scholar 

  69. Oh HJ, Nam IS, Yun H, Kim J, Yang J, Sohn JR (2014) Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Build Environ 82:203–214. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2014.08.019

    Article  Google Scholar 

  70. Theresa MF, Lomboy C, Quirit LL, Molina VB, Dalmacion GV, Schwartz JD, Suh HH, Baja ES (2015) Characterization of particulate matter 2.5 in an urban tertiary care hospital in the Philippines. Build Environ 92:432–439. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.05.018

    Article  Google Scholar 

  71. Liao CM, Huang SJ, Hsin Yu (2004) Size dependent particulate matter indoor, outdoor relationships for a wind induced naturally ventilated airspace. Build Environ 39(4):411–420. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2003.09.015

    Article  Google Scholar 

  72. Massey D, Masih J, Kulshrestha A, Habil M, Taneja A (2009) Indoor, outdoor relationship of fine particles less than 2.5 μm (PM2.5) in residential homes locations in central Indian region. Build Environ 44(10):2037–2045. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2009.02.010

    Article  Google Scholar 

  73. Zhao L, Chen C, Wang P, Chen Z, Cao S, Wang Q, Xie G, Wan Y, Wang Y, Bin L (2015) Influence of atmospheric fine particulate matter (PM2.5) pollution on indoor environment during winter in Beijing. Build Environ 0360:1323. https://doi.org/10.1016/j.buildenv.2015.02.008

    Article  Google Scholar 

  74. Jan R, Roy R, Suman Yadav P, Satsangi G (2017) Exposure assessment of children to particulate matter and gaseous species in school environments of Pune, India. Build Environ 111:207–217. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2016.11.008

    Article  Google Scholar 

  75. Saraga D, Pateraki S, Papadopoulos A, Vasilakos C, Maggos T (2011) Studying the indoor air quality in three non residential environments of different use: a museum, a printery industry and an office. Build Environ 46(11):2333–2341. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2011.05.013

  76. Rivas I, Viana M, Moreno T, Pandolfi M, Amato F, Reche C, Bouso L, Àlvarez Pedrerol M, Alastuey A, Sunyer J, Querol X (2014) Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ Int 69:200–212. ISSN 0160 4120, https://doi.org/10.1016/j.envint.2014.04.009

  77. Meier R, Eeftens M, Phuleria HC, Ineichen A, Corradi E, Davey M, Fierz M, Ducret RE, Stich IA, Schindler C, Rochat T, Hensch NP, Tsai MY, Künzli N (2015) Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PMabsorbance and NO2 in Swiss homes. J Expos Sci Environ Epidemiol 25(5):499–505. ISSN 1559 0631, https://doi.org/10.1038/jes.2015.3

    Article  Google Scholar 

  78. Challoner A, Gill L (2014) Indoor, outdoor air pollution relationships in ten commercial buildings: PM2.5 and NO2. Build Environ 80:159–173. ISSN 0360 1323. https://doi.org/10.1016/j.buildenv.2014.05.032

    Article  Google Scholar 

  79. Jinhua H, Li N (2015) Variation of PM2.5 concentrations in shopping malls in Autumn, Changsha. Procedia Eng 121:692–698. ISSN 1877 7058, https://doi.org/10.1016/j.proeng.2015.09.006

    Article  Google Scholar 

  80. Ren J, Liu J, Cao X, Hou Y (2017) Influencing factors and energy saving control strategies for indoor fine particles in commercial office buildings in six Chinese cities. Energy and Build 149(15):171–179. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2017.05.061

    Article  Google Scholar 

  81. Jung CC, Pei Chih W, Tseng CH, Huey Jen S (2015) Indoor air quality varies with ventilation types and working areas in hospitals. Build Environ 85:190–195. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2014.11.026

    Article  Google Scholar 

  82. Shi S, Zhao B (2016) Occupants’ interactions with windows in 8 residential apartments in Beijing and Nanjing, China. Build Simul 9(2):221–231. ISSN 1996 8744, https://doi.org/10.1007/s12273-015-0266-z

    Article  Google Scholar 

  83. Johnson M, MacNeill M, Mannion AG, Nethery E, Xiaohong X, Dales R, Rasmussen P, Wheeler A (2013) Development of temporally refined land use regression models predicting daily household level air pollution in a panel study of lung function among asthmatic children. J Expo Sci Environ Epidemiol 23(3):259–267. ISSN 1559 0631, https://doi.org/10.1038/jes.2013.1

    Article  Google Scholar 

  84. Rackes A, Waring MS (2013) Modeling impacts of dynamic ventilation strategies on indoor air quality of offices in six US cities. Build Environ 60:243–253. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2012.10.013

    Article  Google Scholar 

  85. Gall ET, Chen A, Chang VWC, Nazaroff WW (2015) Exposure to particulate matter and ozone of outdoor origin in Singapore. Build Environ 93:3–13. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.03.027

    Article  Google Scholar 

  86. Dimitroulopoulou C, Ashmore MR, Hill MTR, Byrne MA, Kinnersley R (2006) INDAIR: a probabilistic model of indoor air pollution in UK homes. Atmos Environ 40(33):6362–6379. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2006.05.047

    Article  Google Scholar 

  87. McGrath JA, Byrne MA, Ashmore MR, Terry AC, Dimitroulopoulou C (2014) A simulation study of the changes in PM2.5 concentrations due to interzonal airflow variations caused by internal door opening patterns. Atmos Environ 87:183–188. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2014.01.050

  88. Li X, Yan Y, Shang Y, Tu J (2015) An Eulerian–Eulerian model for particulate matter transport in indoor spaces. Build Environ 86:191–202. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.01.010

  89. Kao HM, Chang TJ, Hsieh YF, Wang CH, Hsieh CI (2009) Comparison of airflow and particulate matter transport in multi room buildings for different natural ventilation patterns. Energy Build 41(9):966–974. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2009.04.005

    Article  Google Scholar 

  90. Zhang T, Tan Y, Zhang X, Li Z (2016) A glazed transpired solar wall system for improving indoor environment of rural buildings in northeast China. Build Environ 98:158–179. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2016.01.011

  91. Lai Alvin CK, Chen FZ (2007) Modeling of cooking emitted particle dispersion and deposition in a residential flat: a real room application. Build Environ 42(9):3253–3260. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2006.08.015

    Article  Google Scholar 

  92. Jurelionis A, Gagytė L, Prasauskas T, Čiužas D, Krugly E, Šeduikytė L, Martuzevičius D (2015) The impact of the air distribution method in ventilated rooms on the aerosol particle dispersion and removal: the experimental approach. Energy Build 86:305 313. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2014.10.014

  93. Liu Yu, Li H, Feng G (2017) Simulation of inhalable aerosol particle distribution generated from cooking by Eulerian approach with RNG k–epsilon turbulence model and pollution exposure in a residential kitchen space. Build Simul 10(1):135–144. ISSN 1996 8744, https://doi.org/10.1007/s12273-016-0313-4

    Article  Google Scholar 

  94. David TB, Waring MS (2016) Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen US cities. Build Environ 104(1):320–336. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2016.05.007

    Article  Google Scholar 

  95. Liu Y, Cao Q, Liu W, Lin CH, Wei D, Baughcum S, Long Z, Shen X, Chen Q (2017) Numerical modeling of particle deposition in the environmental control systems of commercial airliners on ground. Build Simul 10(2):265–275. ISSN 1996 8744, https://doi.org/10.1007/s12273-016-0323-2

    Article  Google Scholar 

  96. Thatcher TL, Layton DW (1995) Deposition, resuspension, and penetration of particles within a residence. Atmos Environ 29(13):1487–1497. ISSN 1352 2310, https://doi.org/10.1016/1352-2310(95)00016-R

  97. Gaffin JM, Petty CR, Hauptman M, Kang CM, Wolfson JM, Awad YA, Di Q, Lai PS, Sheehan WJ, Baxi S, Coull BA, Schwartz JD, Gold DR, Koutrakis P, Phipatanakul W (2016) Modeling indoor particulate exposures in inner city school classrooms. J Expo Sci Environ Epidemiol 7:1–7. ISSN 1559 064X, https://doi.org/10.1038/jes.2016.52

    Article  Google Scholar 

  98. Hodas N, Meng Q, Lunden MM, Rich DQ, Özkaynak H, Baxter LK, Zhang Q, Turpin BJ (2012) Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates. J Expo Sci Environ Epidemiol 22(2):448–454. ISSN 1559 0631, https://doi.org/10.1038/jes.2012.34

    Article  Google Scholar 

  99. Chen Z, Chen C, Wei S, Wu Y, Wang Y, Wan Y (2016) Impact of the external window crack structure on indoor PM2.5 mass concentration. Build Environ 108(1):240–251. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2016.08.031

    Google Scholar 

  100. Shi Y, Li X, Li H (2017) A new method to assess infiltration rates in large shopping centers. Build Environ 119:140–152. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2017.04.011

  101. Ji W, Zhao B (2015) Contribution of outdoor originating particles, indoor emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: a model based estimation. Build Environ 90:196–205. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.04.006

    Article  Google Scholar 

  102. Lee BH, Yee SW, Kang DH, Yeo MS, Kim KW (2017) Multi zone simulation of outdoor particle penetration and transport in a multi story building. Build Simul 10(4):525–534. ISSN 1996 8744, https://doi.org/10.1007/s12273-016-0340-1

    Article  Google Scholar 

  103. Lai Alvin CK (2004) Modeling of airborne particle exposure and effectiveness of engineering control strategies. Build Environ 39(6):599–610. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2003.12.005

    Article  Google Scholar 

  104. Das P, Shrubsole C, Jones B, Hamilton I, Chalabi Z, Davies M, Mavrogianni A, Taylor J (2014) Using probabilistic sampling based sensitivity analyses for indoor air quality modelling. Build Environ 78:171–182. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2014.04.017

    Article  Google Scholar 

  105. Das P, Chalabi Z, Jones B, Milner J, Shrubsole C, Davies M, Hamilton I, Ridley I, Wilkinson P (2013) Multi objective methods for determining optimal ventilation rates in dwellings. Build Environ 66:72–81. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2013.03.021

    Article  Google Scholar 

  106. Marsik T, Johnson R (2008) Use of Simulink to evaluate the air quality and energy performance of HRV equipped residences in Fairbanks, Alaska. Energy Build 40(8):1605–1613. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2008.02.007

    Article  Google Scholar 

  107. Marsik T, Johnson R (2008) HVAC air quality model and its use to test a PM2.5 control strategy. Build Environ 43(11):1850–1857. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2007.11.001

  108. Taylor J, Shrubsole C, Davies M, Biddulph P, Das P, Hamilton I, Vardoulakis S, Mavrogianni A, Jones B, Oikonomou E (2014) The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources. Indoor Air 24(6), 639–651. ISSN 1600 0668, https://doi.org/10.1111/ina.12116

  109. Martins NR, da Graça GC (2017) Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings. Appl Energy 189:711–724. ISSN 0306 2619, https://doi.org/10.1016/j.apenergy.2016.12.103

  110. Martins NR, da Graça GC, Simulation of the effect of fine particle pollution on the potential for natural ventilation of non domestic buildings in European cities. Build Environ 115:236–250. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2017.01.030

  111. Martins NR, da Graça GC (2018) Effects of airborne fine particle pollution on the usability of natural ventilation in office buildings in three megacities in Asia. Renew Energy 117:357–373. ISSN 0960 1481, https://doi.org/10.1016/j.renene.2017.10.089

  112. Luo J, Du P, Samat A, Xia J, Che M, Xue Z (2017) Spatiotemporal pattern of PM2.5 concentrations in mainland china and analysis of its influencing factors using geographically weighted regression. Sci Rep 7, Article Number 40607. ISSN 2045 2322, https://doi.org/10.1038/srep40607

  113. Liang CS, Duan FK, He KB, Ma YL (2016) Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ Int 86:150–170. ISSN 0160 4120, https://doi.org/10.1016/j.envint.2015.10.016

  114. Kim BM, Seo J, Kim JY, Lee JY, Kim Y (2016) Transported versus local contributions from secondary and biomass burning sources to PM2.5. Atmos Environ 144:24–36. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2016.08.072

    Article  Google Scholar 

  115. He BQ (2016) Advances in emission characteristics of diesel engines using different biodiesel fuels. Renew Sustain Energy Rev 60:570–586. ISSN 1364 0321, https://doi.org/10.1016/j.rser.2016.01.093

    Article  Google Scholar 

  116. Khan MI, Yasmin T, Shakoor A (2015) Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew Sustain Energy Rev 51:785–797. ISSN 1364 0321, https://doi.org/10.1016/j.rser.2015.06.053

    Article  Google Scholar 

  117. Han X, Guo Q, Liu C, Strauss H, Yang J, Hu J, Wei R, Tian L, Kong J, Peters M (2016) Effect of the pollution control measures on PM2.5 during the 2015 China Victory Day Parade: implication from water soluble ions and sulfur isotope. Environ Pollut 218:230–241. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2016.06.038

  118. Chen L, Liu C, Zou R, Yang M, Zhang Z (2016) Experimental examination of effectiveness of vegetation as bio filter of particulate matters in the urban environment. Environ Pollut 208:198–208. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2015.09.006

    Article  Google Scholar 

  119. Tong Z, Whitlow TH, MacRae PF, Landers AJ, Harada Y (2015) Quantifying the effect of vegetation on near road air quality using brief campaigns. Environ Pollu 201:141–149. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2015.02.026

    Article  Google Scholar 

  120. Jin X, Yang L, Xiaoze D, Yang Y (2017) Transport characteristics of PM2.5 inside urban street canyons: the effects of trees and vehicles. Build Simul 10(3):337–350. ISSN 1996 8744, https://doi.org/10.1007/s12273-016-0324-1

    Article  Google Scholar 

  121. Chen Y, Schleicher N, Fricker M, Cen K, Liu XL, Kaminski U, Yu Y, Wu XF, Norra S (2016) Long term variation of black carbon and PM2.5 in Beijing, China with respect to meteorological conditions and governmental measures. Environ Pollu, 212:269–278. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2016.01.008

  122. Zhang YL, Cao F (2015) Fine particulate matter (PM2.5) in China at a city level. Sci Rep 5, Article Number 14884. ISSN 2045 2322, https://doi.org/10.1038/srep23604

  123. Qadir RM, Abbaszade G, Schnelle Kreis J, Chow JC, Zimmermann R (2013) Concentrations and source contributions of particulate organic matter before and after implementation of a low emission zone in Munich, Germany. Environ Pollu 175:158–167. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2013.01.002

    Article  Google Scholar 

  124. Hasheminassab S, Daher N, Ostro BD, Sioutas C (2014) Long term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: a focus on emissions reduction from vehicular sources. Environ Pollu 193:54–64. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2014.06.012

    Article  Google Scholar 

  125. Grabow ML, Spak SN, Holloway T, Stone Jr B, Mednick AC, Patz JA (2012) Air quality and exercise related health benefits from reduced car travel in the midwestern United States. Environ Health Perspect 120(1):68–76. ISSN 0091 6765, https://doi.org/10.1289/ehp.1103440

  126. Shu S, Batteate C, Cole B, Froines J, Zhu Y (2016) Air quality impacts of a CicLAvia event in Downtown Los Angeles, CA. Environ Pollu 208:170–176. https://doi.org/10.1016/j.envpol.2015.09.010

    Article  Google Scholar 

  127. Whitlow TH, Andrew Hall K, Zhang M, Anguita J (2011) Impact of local traffic exclusion on near road air quality: findings from the New York City “Summer Streets” campaign. Environ Pollu 159(8):2016–2027. ISSN 0269 7491, https://doi.org/10.1016/j.envpol.2011.02.033

    Article  Google Scholar 

  128. Karagulian F, Belis CA, Carlos FC, Dora AM, Ustün P, Bonjour S, Rohani HA, Amann M (2015) Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2015.08.087

    Article  Google Scholar 

  129. Shuangchen M, Jin C, Gongda C, Weijing Y, Sijie Z (2016) Research on desulfurization wastewater evaporation: Present and future perspectives. Renew Sustain Energy Rev 58:1143–1151. ISSN 1364 0321, https://doi.org/10.1016/j.rser.2015.12.252

  130. Carvalho RL, Jensen OM, Tarelho Luís AC (2016) Mapping the performance of wood burning stoves by installations worldwide. Energy Build 127(1):658–679. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2016.06.010

    Article  Google Scholar 

  131. Islam A, Chan ES, Yap YHT, Mondal MdAH, Moniruzzaman M, Mridha M (2014) Energy security in Bangladesh perspective—an assessment and implication. Renew Sustain Energy Rev 32:154–171. ISSN 1364 0321, https://doi.org/10.1016/j.rser.2014.01.021

  132. Torkmahalleh MA, Kaibaldiyeva U, Kadyrbayeva A (2017) A new computer model for the simulation of particulate matter formation from heated cooking oils using Aspen Plus. Build Simul 10(4):535–550. ISSN 1996 8744, https://doi.org/10.1007/s12273-016-0341-0

    Article  Google Scholar 

  133. Amouei Torkmahalleh M, Zhao Y, Hopke PK, Rossner A, Ferro AR (2013) Additive impacts on particle emissions from heating low emitting cooking oils. Atmos Environ 74:2310. https://doi.org/10.1016/j.atmosenv.2013.03.038

    Article  Google Scholar 

  134. Yan XD, Wang QM, Tie C, Jin HT, Han YX, Zhang JL, Yu XM, Hou Q, Zhang PP, Wang AP, Zhang PC, Gao Z, Jiang JD (2017) Polydatin protects the respiratory system from PM2.5 exposure. Sci Rep 7, Article Number 40030. ISSN 2045 2322, https://doi.org/10.1038/srep40030

  135. Zhang N, Han B, He F, Jia X, Zhao R, Zhang Y, Bai Z (2017) Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ Pollu 227:24–30. https://doi.org/10.1016/j.envpol.2017.04.033

    Article  Google Scholar 

  136. Johnston J, Counsell J, Strachan PA (2011) Trends in office internal gains and the impact on space heating and cooling, CIBSE Technical Symposium, DeMontfort University, Leicester, UK. https://strathprints.strath.ac.uk/id/eprint/39288

  137. Mølgaard B, Koivisto AJ, Hussein T, Hämeri K (2014) A new clean air delivery rate test applied to five portable indoor air cleaners. Aerosol Sci Technol 48(4):409–417. ISSN 0278 6826, https://doi.org/10.1080/02786826.2014.883063

  138. Ma H, Shen H, Shui T, Li Q, Zhou L (2016) Experimental study on ultrafine particle removal performance of portable air cleaners with different filters in an office room. Int J Environ Res Publ Health 13, Number 1, Article Number 102. ISSN 1660 4601, https://doi.org/10.3390/ijerph13010102

  139. Vyas S, Srivastav N, Spears D (2016) An experiment with air purifiers in Delhi during winter 2015. PLoS ONE 11(12), Article Number e0167999. ISSN 1932 6203, https://doi.org/10.1371/journal.pone.0167999

  140. Ongwandee M, Kruewan A (2013) Evaluation of portable household and in car air cleaners for air cleaning potential and ozone initiated pollutants. Indoor Built Environ 22(4):659–668. ISSN 1420 326X, https://doi.org/10.1177/1420326X12460254

    Article  Google Scholar 

  141. Spilak MP, Karottki GD, Kolarik B, Frederiksen M, Loft S, Gunnarsen L (2014) Evaluation of building characteristics in 27 dwellings in Denmark and the effect of using particle filtration units on PM2.5 concentrations. Build Environ 73:55–63. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2013.11.020

    Article  Google Scholar 

  142. Hart JF, Ward TJ, Spear TM, Rossi RJ, Holland NN, Loushin BG (2011) Evaluating the effectiveness of a commercial portable air purifier in homes with wood burning stoves: a preliminary study. J Environ Public Health 2011: Article Number 324809. ISSN 1687 9813, https://doi.org/10.1155/2011/324809

  143. Ardkapan SR, Afshari A, Bergsøe NC, Nielsen PV (2014) Evaluation of air cleaning technologies existing in the Danish market: experiments in a duct and in a test room. Indoor Built Environ 23(8):1177–1186. https://doi.org/10.1177/1420326X13501097

    Article  Google Scholar 

  144. Noh KC, Yook SJ (2016) Evaluation of clean air delivery rates and operating cost effectiveness for room air cleaner and ventilation system in a small lecture room. Energy Build 119(1):111–118. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2016.03.027

    Article  Google Scholar 

  145. Barn P, Larson T, Noullett M, Kennedy S, Copes R, Brauer M (2015) Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness. J Expo Sci Environ Epidemiol 18(5):503–511. ISSN 1559 0631, https://doi.org/10.1038/sj.jes.7500640

    Article  Google Scholar 

  146. Siegel JA (2016) Primary and secondary consequences of indoor air cleaners. Indoor Air 88(1):88–96. ISSN 1600 0668, https://doi.org/10.1111/ina.12194

  147. Irga PJ, Paull NJ, Abdo P, Torpy FR (2017) An assessment of the atmospheric particle removal efficiency of an in room botanical biofilter system, Build Environ 115:281–290. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2017.01.035

  148. Zhang T (Tim), Wang S, Sun G, Xu L, Takaoka D (2010) Flow impact of an air conditioner to portable air cleaning. Build Environ 45(9):2047–2056. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2009.11.006

  149. Chen L, Jin X, Yang L, Xiaoze D, Yang Y (2017) Particle transport characteristics in indoor environment with an air cleaner: the effect of nonuniform particle distributions. Build Simul 10(1):123–133. ISSN 1996 8744, https://doi.org/10.1007/s12273-016-0310-7

    Article  Google Scholar 

  150. Jin X, Yang L, Xiaoze D, Yang Y (2016) Particle transport characteristics in indoor environment with an air cleaner. Indoor Built Environ 25(6):987–996. ISSN 1420 326X, https://doi.org/10.1177/1420326X15592253

    Article  Google Scholar 

  151. Hatzopoulou M, Weichenthal S, Dugum H, Pickett G, Moreno LM, Kulka R, Andersen R, Goldberg M (2013) The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. J Expo Sci Environ Epidemiol 23(1):46–51. ISSN 1559 0631, https://doi.org/10.1038/jes.2012.85

    Article  Google Scholar 

  152. Arku RE, Dionisio KL, Hughes AF, Vallarino J, Spengler JD, Castro MC, Mensah SA, Ezzati M (2015) Personal particulate matter exposures and locations of students in four neighborhoods in Accra, Ghana. J Expo Sci Environ Epidemiol 25(6):557–566. ISSN 1559 0631, https://doi.org/10.1038/jes.2014.56

    Article  Google Scholar 

  153. Ai ZT, Mak CM (2015) From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: issues and possibilities for improvement. Build Environ Part 2 94:489–503. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.10.008

    Article  Google Scholar 

  154. Noris F, Adamkiewicz G, Delp WW, Hotchi T, Russell M, Singer BC, Spears M, Vermeer K, Fisk WJ (2013) Indoor environmental quality benefits of apartment energy retrofits. Build Environ 68:170–178. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2013.07.003

    Article  Google Scholar 

  155. Zuraimi MS, Tan Z (2015) Impact of residential building regulations on reducing indoor exposures to outdoor PM2.5 in Toronto. Build Environ 89:336–344. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.03.010

    Article  Google Scholar 

  156. Cao Q, Chen A, Zhou J, Chang VWC (2015) Performance evaluation of filter applications in fan coil units during the Southeast Asian haze episode. Build Environ 107:191–197. ISSN 0360 1323. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2016.08.004

    Article  Google Scholar 

  157. Shehabi A, Ganguly S, Gundel LA, Horvath A, Kirchstetter TW, Lunden MM, Tschudi W, Gadgil AJ, Nazaroff WW (2010) Can combining economizers with improved filtration save energy and protect equipment in data centers? Build Environ 45(3):718–728. https://doi.org/10.1016/j.buildenv.2009.08.009

    Article  Google Scholar 

  158. Montgomery JF, Green SI, Rogak SN, Bartlett K (2012) Predicting the energy use and operation cost of HVAC air filters. Energy Build 47:643–650. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2012.01.001

    Article  Google Scholar 

  159. Zaatari M, Novoselac A, Siegel J (2014) The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop HVAC units. Build Environ 73:151–161. https://doi.org/10.1016/j.buildenv.2013.12.010

    Article  Google Scholar 

  160. Lu H, Lu L (2015) Numerical investigation on particle deposition enhancement in duct air flow by ribbed wall. Build Environ 85:61–72. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2014.11.031

  161. Lu H, Lu L (2015) A numerical study of particle deposition in ribbed duct flow with different rib shapes. Build Environ 94, Part 1:43 53. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2015.07.030

  162. Blocken B, Vervoort R, van Hooff T (2016) Reduction of outdoor particulate matter concentrations by local removal in semi enclosed parking garages: apreliminary case study for Eindhoven city center. J Wind Eng Ind Aerodyn 159:80–98. ISSN 0167 6105, https://doi.org/10.1016/j.jweia.2016.10.008

    Article  Google Scholar 

  163. Araji MT, Ray SD, Leung L (2017) Pilot study on airborne PM2.5 filtration with particle accelerated collision technology in office environments. Sustain Cities Soc 28:101–107. ISSN 2210 6707, https://doi.org/10.1016/j.scs.2016.08.023

  164. Liu C, Hsu PC, Lee HW, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high efficiency PM2.5 capture. Nat Commun 6, Article Number 6205. ISSN 2041 1723, https://doi.org/10.1038/ncomms7205

  165. Zhao X, Wang S, Yin X, Yu J, Ding B (2016) Slip effect functional air filter for efficient purification of PM2.5. Sci Rep 6, Article Number 35472. ISSN 2045 2322, https://doi.org/10.1038/srep35472

  166. Podliński J, Niewulis A, Shapoval V, Mizeraczyk J (2011) Electrohydrodynamic Secondary Flow and Particle Collection Efficiency in a One sided Spike plate Type Electrostatic Precipitator. IEEE Trans Dielectr Electr Insul 18(5):1401–1407. ISSN 1070 9878, https://doi.org/10.1109/TDEI.2011.6032808

    Article  Google Scholar 

  167. Podliński J, Berendt A, Mizeraczyk J (2013) Electrohydrodynamic secondary flow and particle collection efficiency in spike plate multi electrode electrostatic precipitator. IEEE Trans Dielectr Electr Insul 20(5):1481–1488. https://doi.org/10.1109/TDEI.2013.6633674

    Article  Google Scholar 

  168. Podliński J, Dekowski J, Mizeraczyk J, Brocilo D, Chang JS (2006) Electrohydrodynamic gas flow in a positive polarity wire plate electrostatic precipitator and the related dust particle collection efficiency. J Electrost 64(3):259–262. https://doi.org/10.1016/j.elstat.2005.06.006

    Article  Google Scholar 

  169. Tokarek S, Bernis A (2006) An exemple of particle concentration reduction in parisian subway stations by electrostatic precipitation. Environ Technol 27(11):1279–1288. ISSN 0959 3330, https://doi.org/10.1080/09593332708618746

  170. Remaoun SM, Miloua F, Hammadi N, Zouzou N, Dascalescu L (2014) Optimization of a cost effective “Wire Plate” type ESP for installation in a medical waste incinerator. IEEE Trans Ind Appl 50(2):1391–1396. ISSN 0093 9994, https://doi.org/10.1109/TIA.2013.2272607

    Article  Google Scholar 

  171. Farnoosh N, Castle GSP, Adamiak K (2011) A 3D simulation of a single section electrostatic precipitator for dust particles removal. In: 2011 24th Canadian conference on electrical and computer engineering (CCECE), Niagara Falls, ON, Canada, 8–11 May 2011, pp 749–752. ISSN 0840 7789, https://doi.org/10.1109/CCECE.2011.6030555

  172. Zhang J, Dacheng X, Ren J, Helen W, Pan W (2015) Modeling and simulation of PM2.5 collection efficiency in a wire plate ESP subjected to magnetic field and diffusion charging. Environ Progress Sustain Energy 34(3):697–702. https://doi.org/10.1002/ep.12052 https://doi.org/10.1002/ep.12052

    Article  Google Scholar 

  173. Martins NR, da Graça GC (2017) Simulation of the effect of fine particle pollution on the potential for natural ventilation of non domestic buildings in European cities. Build Environ 115:236–250. ISSN 0360 1323, https://doi.org/10.1016/j.buildenv.2017.01.030

  174. Haves P, Linden PF, da Graça GC (2004) Use of simulation in the design of a large, naturally ventilated office building. Build Serv Eng Res Technol 25(3):211–221. ISSN 0143 6244. https://doi.org/10.1191/0143624404bt102oa

  175. Descloitres J (2004) NASA Visible Earth: California and Nevada, MODIS Rapid Response Team, NASA/GSFC, 3 May 2004. https://visibleearth.nasa.gov/view.php?id=59834

  176. NASA/JPL Caltech (2002) PIA03445: Dusty Skies over Southern California, NASA/GSFC/LaRC/JPL, MISR Team, 20 Feb 2002. https://photojournal.jpl.nasa.gov/catalog/PIA03445

  177. United States Census Bureau (2010) United States 2010 Census—Total Population, through American FactFinder. https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml. Accessed 5 Nov 2015

  178. Cheng Z, Luo L, Wang S, Wang Y, Sharma S, Shimadera H, Wang X, Bressi M, de Miranda RM, Jiang J, Zhou W, Fajardo O, Yan N, Hao J (2016) Status and characteristics of ambient PM2.5 pollution in global megacities. Environ Int 89–90:212–221. ISSN 0160 4120, https://doi.org/10.1016/j.envint.2016.02.003

  179. Rodríguez HR, da Silva AS, Sangrador JLT, Banda GLM (2016) Air pollution management and control in Latin America and the Caribbean: implications for climate change. Revista Panamericana de Salud Pública, 40(3):150–159. ISSN 1680 5348, http://www.scielosp.org/pdf/rpsp/v40n3/1020-4989-RPSP-40-03-150.pdf

  180. US Government Publishing Office (2013) Code of Federal Regulations, Title 40: Protection of Environment, Chapter I: Environmental Protection Agency, Subchapter C: Air Programs, Part 50: National Primary and Secondary Ambient Air Quality Standards, § 50.18: National primary ambient air quality standards for PM2.5, 15 Jan 2013

    Google Scholar 

  181. Barclays Official California Code of Regulations (2006) Title 17: Public Health, Division 3: Air Resources, Chapter 1: Air Resources Board, Subchapter 1.5: Air Basins and Air Quality Standards, Article 2: Ambient Air Quality Standards, § 70200: Table of Standards, 17 May 2006

    Google Scholar 

  182. ESA/VITO (2014) Space in images: Springtime in Europe, 4 June 2014. https://www.esa.int/spaceinimages/Images/2014/06/Springtime_in_Europe

  183. Kiesewetter G, Schoepp W, Heyes C, Amann M (2015) Modelling PM2.5 impact indicators in Europe: health effects and legal compliance. Environ Model Softw 74:201–211. ISSN 1364 8152, https://doi.org/10.1016/j.envsoft.2015.02.022

    Article  Google Scholar 

  184. Eeftens M, Tsai MY, Ampe C, Anwander B, Beelen R, Bellander T, Cesaroni G, Cirach M, Cyrys J, de Hoogh K, De Nazelle A, de Vocht F, Declercq C, Dėdelė A, Eriksen K, Galassi C, Gražulevičienė R, Grivas G, Heinrich J, Hoffmann B, Iakovides M, Ineichen A, Katsouyanni K, Korek M, Krämer U, Kuhlbusch T, Lanki T, Madsen C, Meliefste K, Mölter A, Mosler G, Nieuwenhuijsen M, Oldenwening M, Pennanen A, Hensch NP, Quass U, Nielsen OR, Ranzi A, Stephanou E, Sugiri D, Udvardy O, Vaskövi É, Weinmayr G, Brunekreef B, Hoek G (2012) Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos Environ 62:303–317. ISSN 1352 2310, https://doi.org/10.1016/j.atmosenv.2012.08.038

  185. Boston University/NASA GSFC (2002) New Land Cover Classification Maps—Asia Print, Terra—Modis, 14 Aug 2002. https://visibleearth.nasa.gov/view.php?id=61004

  186. Cheng Z, Luo L, Wang S, Wang Y, Sharma S, Shimadera H, Wang X, Bressi M, de Miranda RM, Jiang J, Zhou W, Fajardo O, Yan N, Hao J (2016) Status and characteristics of ambient PM2.5 pollution in global megacities. Environ Int 89–90:212–221. 10.1016/j.envint.2016.02.003, ISSN 0160 4120

    Google Scholar 

  187. Aron P. Dobos, Standard Time Series Data File Format, National Renewable Energy Laboratory, August 2013, http://rredc.nrel.gov/solar/old_data/nsrdb/2005-2012/wfcsv.pdf

  188. Sengupta M, Habte A, Gotseff P, Weekley A, Lopez A, Molling C, Heidinger A (2014) A physics based GOES satellite product for use in NREL’s national solar radiation database. National Renewable Energy Laboratory, July 2014, NREL/CP 5D00 62237. https://www.nrel.gov/docs/fy14osti/62237.pdf

  189. Klick CH, Lefèvre M, Homscheidt MS, Wald L (2015) USER’S GUIDE to the MACC RAD Services on solar energy radiation resources, Copernicus Atmospheric Monitoring Service, European Centre for Medium Range Weather Forecasts, Mar 2015. https://atmosphere.copernicus.eu/sites/default/files/repository/MACCIII_RAD_DEL_D57.5_final_0.pdf

  190. National Centers for Environmental Information, Integrated Surface Data, NCEI DSI 3505—gov.noaa.ncdc:C00532, National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration, US Department of Commerce

    Google Scholar 

  191. White Box Technologies (2016) WBT. Used by permission. www.whiteboxtechnologies.com

  192. California Air Resources Board, 2012 Air Quality Data DVD, August 2012, PTSD 2012 035 DVD

    Google Scholar 

  193. European Environment Agency (2014) AirBase—The European air quality database, Version 7, Mar 2014

    Google Scholar 

  194. US Department of State, StateAir—US Department of State Air Quality Monitoring Program—Mission China

    Google Scholar 

  195. US Department of State, Mission India—US Mission India NowCast Air Quality

    Google Scholar 

  196. Junninen H, Niska H, Tuppurainen K, Ruuskanen J, Kolehmainen M (2004) Methods for imputation of missing values in air quality data sets. Atmos Environ 38(18):2895–2907. https://doi.org/10.1016/j.atmosenv.2004.02.026

    Article  Google Scholar 

  197. Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Liu B, Halverson M, Winiarski D, Rosenberg M, Yazdanian M, Huang J, Crawley D (2011) US Department of Energy Commercial Reference Building Models of the National Building Stock, National Renewable Energy Laboratory, February, NREL/TP 5500 46861. https://doi.org/10.2172/1009264

  198. Lerer MM, da Graça GC, Linden PF (2013) Building energy demand response simulation for an office tower in New York. In: Proceedings of BS2013: 13th conference of international building performance simulation association, Chambéry, France, 26–28 Aug 2013, pp 2511–2518. ISBN 9782746662940, http://www.ibpsa.org/proceedings/BS2013/p_1350.pdf

  199. Occupational Safety & Health Administration, Code of Federal Regulations, Title 29—Labor, Part 1910—Occupational Safety and Health Standards, Subpart J – General Environmental Controls, Standard Number 1910.141—Sanitation

    Google Scholar 

  200. Department of Justice (2010) Americans with Disabilities Act of 1990, 2010 ADA Standards for Accessible Design, Sept 2010

    Google Scholar 

  201. California Building Standards Commission (2013) California Code of Regulations, Title 24—Building Standards Code, Part 2—California Building Code

    Google Scholar 

  202. Occupational Safety & Health Administration, Code of Federal Regulations, Title 29—Labor, Part 1910—Occupational Safety and Health Standards, Subpart D—Walking Working Surfaces, Standard Number 1910.24—Fixed industrial stairs

    Google Scholar 

  203. Crawley DB, Lawrie LK, Winkelmann FC, Buhl WF, Joe Huang Y, Pedersen CO, Strand RK, Liesen RJ, Fisher DE, Witte MJ, Glazer J (2001) EnergyPlus: creating a new generation building energy simulation program. Energy Build 33(4):319–331. ISSN 0378 7788, https://doi.org/10.1016/S0378-7788(00)00114-6

    Article  Google Scholar 

  204. California Building Standards Commission (2013) California Code of Regulations, Title 24—Building Standards Code, Part 6—California Energy Code

    Google Scholar 

  205. Raftery P, Lee E, Webster T, Hoyt T, Bauman F (2014) Effects of furniture and contents on peak cooling load. Energy Build 85:445–457. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2014.09.081

    Article  Google Scholar 

  206. Gowri K, Winiarski DW, Jarnagin RE (2009) Infiltration modeling guidelines for commercial building energy analysis. Office of Scientific and Technical Information, USA. https://doi.org/10.2172/968203

  207. Zhao J, Lasternas B, Lam KP, Yun R, Loftness V (2014) Occupant behavior and schedule modeling for building energy simulation through office appliance power consumption data mining. Energy Build 82:341–355. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2014.07.033

    Article  Google Scholar 

  208. ASHRAE (2013) ASHRAE handbook—fundamentals. American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc, Atlanta, GA, USA 2013, ISBN 978 1 93 650446, ISSN 1523 7230 6, ISSN 1523 7230

    Google Scholar 

  209. Leach M, Lobato C, Hirsch A, Pless S, Torcellini P (2010) Technical support document: strategies for 50% energy savings in large office buildings, national renewable energy laboratory, september. NREL/CP 550 49213. https://www.nrel.gov/docs/fy10osti/49213.pdf

  210. Ertesvåg IS (2011) Uncertainties in heat pump coefficient of performance (COP) and exergy efficiency based on standardized testing. Energy Build 43(8):1937–1946. ISSN 0378 7788, https://doi.org/10.1016/j.enbuild.2011.03.039

    Article  Google Scholar 

  211. Cuce PM, Riffat S (2015) A comprehensive review of heat recovery systems for building applications. Renew Sustain Energy Rev 47:665–682. ISSN 1364 0321, https://doi.org/10.1016/j.rser.2015.03.087

    Article  Google Scholar 

  212. Pigeon Bergmann PA, Abrishami M, Ciminelli M, Bender S, Hall V, Blevins BB (2006) California commercial end use survey—report. California Energy Commission & Itron, Inc, Mar 2006, CEC 400 2006 005. http://www.energy.ca.gov/2006publications/CEC-400-2006-005/CEC-400-2006-005.PDF

  213. Warren PR (1986) The analysis of single sided ventilation measurements. Air Infiltration Rev 7(2):3–5

    Google Scholar 

  214. Fergus Nicol J (2001) Characterising occupant behaviour in buildings: towards a stochastic model of occupant use of windows, lights, blinds, heaters and fans. In: Proceedings of seventh international IBPSA conference: building simulation, 13–15 Aug 2001, Rio de Janeiro, Brazil, pp 1073–1078. ISBN 9788590193944, http://www.ibpsa.org/proceedings/BS2001/BS01_1073_1078.pdf

  215. European Committee for Standardization (2012) Particulate air filters for general ventilation. Determination of the filtration performance. EN 779:2012

    Google Scholar 

  216. Fisk WJ, Faulkner D, Palonen J, Seppanen O (2002) Performance and costs of particle air filtration technologies. Indoor Air 12(4):223–234. ISSN 1600 0668, https://doi.org/10.1034/j.1600-0668.2002.01136.x

    Article  Google Scholar 

  217. Waring MS, Siegel JA (2008) Particle loading rates for HVAC filters, heat exchangers, and ducts. Indoor Air 18(3):209–224. ISSN 1600 0668, https://doi.org/10.1111/j.1600-0668.2008.00518.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Carrilho da Graça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrilho da Graça, G., Martins, N.R. (2021). Ventilative Cooling and Air Pollutants. In: Chiesa, G., Kolokotroni, M., Heiselberg, P. (eds) Innovations in Ventilative Cooling. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-72385-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72385-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72384-2

  • Online ISBN: 978-3-030-72385-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics