Skip to main content

Advertisement

Log in

Study on concentration of ambient NH 3 and interactions with some other ambient trace gases

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We present diurnal variation of ambient ammonia (NH3) in relation with other trace gases (O3, CO, NO, NO2, and SO2) and meteorological parameters at an urban site of Delhi during winter period. For the first time, ambient ammonia (NH3) was monitored very precisely and continuously using ammonia analyzer, which operates on chemiluminescence method. NH3 estimation efficiency of the chemiluminescence method (>90%) is much higher than the conventional chemical trapping method (reproducibility 4.5%). Ambient NH3 concentration reaches its maxima (46.17 ppb) at night and minimum during midday. Result reveals that the ambient ammonia (NH3) concentration is positively correlated with ambient NO (r 2 = 0.79) and NO2 (r 2 = 0.91) mixing ratio and negatively correlated with ambient temperature (r 2 = − 0.32). Wind direction and wind speed indicates that the nearby (~500 m NW) agricultural fields may be major source of ambient NH3 at the observational site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aneja, V. P., Chauhan, J. P., & Walker, J. T. (2000). Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons. Journal of Geophysics (Atmosphere), 105, 11535–11545.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Roelle, P. A., Murray, G. C., Southerland, J., Erisman, J. W., Fowler, D., et al. (2001). Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 35, 1903–1911.

    Article  CAS  Google Scholar 

  • Burkart, M. R., & James, D. E. (1999). Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. Journal of Environmental Quality, 28, 850–859.

    Article  CAS  Google Scholar 

  • Cadle, S. H., Countess, R. J., & Kelly, N. A. (1982). Nitric acid and ammonia in urban and rural locations. Atmospheric Environment, 16, 2501–2507.

    Article  CAS  Google Scholar 

  • Carmichael, G. R., Ferm, M., Thongboonchoo, N., Woo, J. H., Chan, L. Y., Murano, K., et al. (2003). Measurements of sulfur dioxide, ozone and ammonia concentration in Asia, Africa and South America using passive samplers. Atmospheric Environment, 37, 1293–1308.

    Article  CAS  Google Scholar 

  • Erduran, M. S., & Tuncel, S. G. (2001). Gaseous and particulate air pollutants in the Northeastern Mediterranean Coast. The Science of Total Environment, 281, 205–215.

    Article  CAS  Google Scholar 

  • Erisman, J. W., Otjes, R., Hensen, A., Jongejan, P., vanden Bulk, P., Khlystov, A., et al. (2001). Instruments development and application in studies and monitoring of ambient ammonia. Atmospheric Environment, 35, 1913–1922.

    Article  CAS  Google Scholar 

  • Ferm, M. (1998). Atmospheric ammonia and ammonium transport in Europe and critical loads: A review. Nutrient Cycle Agroecosystem, 51, 5–17.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N. (1999). Chemistry of the upper and lower atmosphere. New York: Academic.

    Google Scholar 

  • Galloway, J. N. (1988). Effects of acid deposition on tropical aquatic ecosystems. In H. Rodhe & R. Herrera (Eds.), Acidification in tropical countries. SCOPE 36. New York: Wiley.

    Google Scholar 

  • Goyal, P., & Sidhartha. (2002). Effect of winds on SO2 and SPM concentrations in Delhi. Atmospheric Environment, 36, 2925–2930.

    Article  CAS  Google Scholar 

  • Gupta, A., Kumar, R., Maharaj, K. K., & Srivastava, S. S. (2003). Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Environment, 37, 4837–4846.

    Article  CAS  Google Scholar 

  • Hao, N., Zhou, B., Chen, D., Sun, Y., Gao, S., & Chen, L. (2006). Measurements of NO2, SO2, O3, Benzene and Toluene using differential optical absorption spectroscopy (DOAS) in Shanghai, China. Annali di Chimi, 96, 365–375.

    Article  CAS  Google Scholar 

  • Inouye, R., & Azman, Z. A. (1986). Diurnal variation and frequency distribution of air pollutants concentration in Kuala Lampur and its outskirts—a preliminary analysis. Pertanika, 9, 201–208.

    CAS  Google Scholar 

  • Jain, S. L., Arya, B. C., Kumar, A., Ghude, S. D., & Kulkarni, P. S. (2005). Observational study of surface ozone at New Delhi, India. International Journal of Remote Sensing, 26, 3515–3524.

    Article  Google Scholar 

  • Kapoor, R. K., Singh, G., & Tiwari, S. (1992). Ammonia concentration viš a viš meteorological conditions at Delhi, India. Atmospheric Environment, 28, 1–9.

    CAS  Google Scholar 

  • Khemani, L. T., Momin, G. A., & Singh, G. (1987). Variation in trace gases concentrations in different environments in India. PAGEOPH, 125, 151–158.

    Article  Google Scholar 

  • Khemani, L. T., Momin, G. A., Naik, M. S., Rao, P. S. P., Safai, P. D., Singh, G., et al. (1989). Spread of acid rain over India. Atmospheric Environment, 23, 757–762.

    Article  Google Scholar 

  • Kostadinov, I., Giovanelli, G., Ravegnani, F., Bortoli, D., & Petritili, A. (1999). Depolarization ratio of the zenith scattered radiation and measured NO2 slant columns. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 3754, 402–410.

    Google Scholar 

  • Kulshrestha, U. C., Sarkar, A. K., Srivastava, S. S., & Parasar, D. C. (1996). Investigation into atmospheric deposition through precipitation studies at New Delhi (India). Atmospheric Environment, 30, 4149–4154.

    Article  CAS  Google Scholar 

  • Lee, S., Baumann, K., Schauer, J. J., Sheesley, R. J., Nacher, L. P., Meinardi, S., et al. (2005). Gaseous and particulate emissions from prescribed burning in Georgia. Environment Science and Technology, 39, 9049–9056.

    Article  CAS  Google Scholar 

  • Li, Y., Schwab, J. J., & Sdemerjian, K. L. (2006). Measurement of ambient ammonia using a tunable diode laser absorption spectrometer: Characteristics of ambient ammonia emissions in an urban area of New York City. Journal of Geophysical Research, 111, D10S02.

    Article  CAS  Google Scholar 

  • Mickel, S., Brunscho, N. S., & Fangmeier, A. (1991). Effects of nitrogen nutrition on growth and competition of Calluna vulgaris (L.) Hull and Deschampsia.exuosa (L.) Trin. Angewandte Botanik, 65, 359–372.

    CAS  Google Scholar 

  • Misselbrook, T. H., Van Der Weerden, T. J., Pain, B. F., Jarvis, S. C., Chanbers, B. J., Smith, K. A., et al. (2000). Ammonia emission factors for UK agriculture. Atmospheric Environment, 34, 871–880.

    Article  CAS  Google Scholar 

  • Olivier, J. G. J., Bouwman, A. F., Van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., et al. (1996). Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone depleting substances for all anthropogenic and most natural sources on a per country basis and on 10 × 10_ grid. RIVM techn. report 771060 002; TNO-MEP report R96/119. Bilthoven: National Institute of Public Health and the Environment/Netherlands Organization for Applied Scienti.c Research.

  • Parashar, D. C., Granat, L., Kulshreshtha, U. C., Pillai, A. G., Naik, M. S., Momin, G. A., et al. (1996). Report CM-90 September 1996, Department of meteorology, Stockholm University International Meteorological Institute in Stockholm (Sweden).

  • Parmar, R. S., Satsangi, G. S., Lakhani, A., Srivastava, S. S., & Prakash, S. (2001). Simultaneous measurements of ammonia and nitric acid in ambient air at Agra (27°10′N and 78°05′E) (India). Atmospheric Environment, 35, 5979–5988.

    Article  CAS  Google Scholar 

  • Perrino, C., Catrambone, M., Bucchianico, A., & Allergrini, I. (2002). Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions. Atmospheric Environment, 36, 5385–5394.

    Article  CAS  Google Scholar 

  • Possanzini, M., Buttini, P., & Dipalo, V. (1988). Characterization of a rural area in terms of dry and wet deposition. The Science of Total Environment, 74, 111–120.

    Article  CAS  Google Scholar 

  • Sakuri, T., Fujita, S. I., Hayami, H., & Furuhashi, N. (2003). A case study of high ammonium concentration in the nighttime by means of modeling analysis in the Kanto region of Japan. Atmospheric Environment, 37, 4461–4465.

    Article  CAS  Google Scholar 

  • Sharma, M., Kishore, S., Tripathi, S. N., & Behra, S. N. (2007). Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. Journal of Atmospheric Chemistry, 58, 1–17.

    Article  CAS  Google Scholar 

  • Singh, S. P., Satsangi, G. S., Khare, P., Lakhani, A., Maharaj Kumari, M., & Srivastava, S. S. (2001). Multiphase measurement of atmospheric ammonia. Chemosphere, 3, 107–116.

    CAS  Google Scholar 

  • Stockwell, W. R., Watson, J. G., Robinson, N. F., Steiner, W., & Sylte, W. W. (2000). The ammonium nitrate particle equivalent of NOx emissions for winter time conditions in Central California’s San Joaquin Valley. Atmospheric Environment, 34, 4711–4717.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Dragostis, U., Tang, Y. S., & Flower, D. (2000). Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment, 34, 855–869.

    Article  CAS  Google Scholar 

  • Talbot, R. W., Harriss, R. C., Browell, E. V., Gregory, G. L., Sebacher, D. I., & Beck, S. M. (1988). Distribution and geochemistry of aerosol in the tropical north Atlantic troposphere, relation to Saharan dust. Journal of Geophysical Research, 92, 1499–1508.

    Article  Google Scholar 

  • Van der Eerden, L. J. M., Pérez-Soba, M., & Dueck, T. A. (1990). Responses of Pinus sylvestris to atmospheric ammonia. In Proc. Int. Congr. Forest Decline Research, Freidrichshafen, Germany, October 1989.

  • Warneck, P. (1988). Chemistry of the natural atmosphere. San Diego: Academic.

    Google Scholar 

  • Whitehead, J. D., Longley, I. D., & Gallagher, M. W. (2007). Seasonal and diurnal variation in atmospheric ammonia in an urban environment measures using a quantum cascade laser absorption spectrophotometer. Water Air and Soil Pollution, 183, 317–329.

    Article  CAS  Google Scholar 

  • Yin, Y., Zang, T., Luo, Y., & Lu, D. (2008). Spatial and diurnal variations in concentration of atmospheric NOx along urban-rural roadways in Nanjing, Southeastern China. International Journal of Environmental Pollution, 32, 332–440.

    Article  CAS  Google Scholar 

  • Zutshi, P. K., Sequaria, R., Mahadevan, T. N., & Banerjee, T. (1970). Environmental concentrations of some of the major pollutants at the BARC site, Trombay. Indian Journal of Meteorology & Geophysics, 21, 473–478.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Datta, A., Saud, T. et al. Study on concentration of ambient NH 3 and interactions with some other ambient trace gases. Environ Monit Assess 162, 225–235 (2010). https://doi.org/10.1007/s10661-009-0791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0791-2

Keywords

Navigation