Skip to main content

Advertisement

Log in

Precipitation composition and wet deposition temporal pattern in Central Serbia for the period from 1998 to 2004

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bulk samples collected on a daily basis at three principal meteorological stations in central Serbia were analyzed on chloride (Cl), nitrate \( {\left( {{\text{NO}}^{ - }_{3} } \right)} \), sulfate \( {\left( {{\text{SO}}^{{2 - }}_{4} } \right)} \), sodium (Na+), ammonium \( {\left( {{\text{NH}}^{ + }_{4} } \right)} \), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) in addition to precipitation amount, pH and conductivity measurements over the period 1998–2004. The data were subjected to variety of analyses (linear regression, principal component analysis, time series analysis) to characterize precipitation chemistry in the study area. The most abundant ion was \( {\text{SO}}^{{2 - }}_{4} \) with annual volume weighted mean concentration of 242 μeq L−1. Neutralization of precipitation acidity occurs both as a result of the dissolution of alkaline compounds containing Ca2+, Mg2+, and K+ as well as the absorption of ammonia. The ratio of \( {{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} } \mathord{\left/ {\vphantom {{{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} } {{\text{NO}}^{{\text{ - }}}_{{\text{3}}} }}} \right. \kern-\nulldelimiterspace} {{\text{NO}}^{{\text{ - }}}_{{\text{3}}} } \) was above 5, which indicated that the combustion process of low-grade domestic lignite for electricity generation from coal-fired thermal power plants was the main source of pollution in the investigated area. A considerable mean annual bulk wet deposition of SO4–S determined by precipitation amount and concentrations of sulfate in the precipitation was calculated to be 12–35 kg ha−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Momani, I. F., Ataman, O. Y., Anwari, M. A., Tuncel, S., Kose, S., & Tuncel, G. (1995). Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmospheric Environment, 29, 1131–1143.

    Article  CAS  Google Scholar 

  • Altwicker, E. R., & Mahar, J. T. (1984). NH4/Ca ratios in different forms of atmospheric deposition: Interpretive potential. Atmospheric Environment, 18, 1875–1888.

    Article  CAS  Google Scholar 

  • Bridgman, H. A. (1992). Evaluating rainwater contamination and sources in southeast Australia using factor analysis. Atmospheric Environment, 26A, 2401–2412.

    CAS  Google Scholar 

  • Buijsman, E., Maas, H. F. M., & Asman, W. A. H. (1987). Anthropogenic NH3 emissions in Europe. Atmospheric Environment, 21, 1009–1022.

    Article  CAS  Google Scholar 

  • Charlson, R. J., & Rodhe, H. (1982). Factors controlling the acidity of natural rainwater. Nature, 295, 683–685.

    Article  CAS  Google Scholar 

  • Dobrilović, B. (1960). Upper air flow over Yugoslavia and characteristic surface winds. Papers, 3. Belgrade. Faculty of Nature Sciences, University of Belgrade (in Serbian).

  • Drever, J. L. (1982). The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • EEA (European Environment Agency). (2006). Annual European Community LRTAP Convention Emission Inventory 1990–2004, Technical report No 8/2006, Copenhagen, Denmark.

  • EMEP. (1996). Manual for sampling and chemical analysis, EMEP/CCC-Report 1/95, Norwegian Institute for Air Research.

  • EMEP. (2000). Data Report 1998, Part 1: Annual summaries. EMEP/CCC-Report 3/2000, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (2001). Data Report 1999, Acidifying and eutrophying compounds, Part 2: Monthly and seasonal summaries, EMEP/CCC-Report 3/2001, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (2002a). Data quality 2000, quality assurance, and field comparisons, EMEP/CCC-Report 3/2002, Ref No O-95024, Norwegian Institute for Air Research.

  • EMEP. (2002b). Data Report 2000, Acidifying and eutrophying compounds Part 1: Annual summaries, EMEP/CCC-Report 6/2002, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (2003). Data Report 2001, Acidifying and eutrophying compounds, EMEP/CCC-Report 3/2003, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (2004). Data Report 2002, Acidifying and eutrophying compounds, EMEP/CCC-Report 1/2004, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (2005). Data Report 2003, Acidifying and eutrophying compounds, EMEP/CCC-Report 3/2005, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (2006a). Transboundary air pollution by main pollutants (S, N, O3) and PM Serbia and Montenegro, EMEP/MSC-W, Data Note 1/2006, Norwegian Institute for Air Research.

  • EMEP. (2006b). Data Report 2004, Acidifying and eutrophying compounds, EMEP/CCC-Report 1/2006, Ref No O-7727, Norwegian Institute for Air Research.

  • EMEP. (Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe) (2007). Monitoring sites EMEP Measurement Network. Available from: http://www.nilu.no/projects/ccc/network/index.html.

  • Gatz, D. F. (1991). Urban precipitation chemistry: A review and synthesis. Atmospheric Environment, 25B, 1–15.

    CAS  Google Scholar 

  • Gorham, E., Martin, F. B., & Litasu, J. T. (1984). Acid rain: Ionic correlation in the eastern United States. Science, 225, 407–409.

    Article  CAS  Google Scholar 

  • Hedin, L. O., Granat, L., Likens, G. E., Buishand, T. A., Galloway, J. N., Butler, T. J., et al. (1994). Chemical characterization of acid precipitation in Albany, New York. Nature, 367, 351–354.

    Article  CAS  Google Scholar 

  • Hewitt, C. N. (2001). The atmospheric chemistry of sulphur and nitrogen in power station plumes. Atmospheric Environment, 35, 1155–1170.

    Article  CAS  Google Scholar 

  • Hildemann, L. M., Russel, A. G., & Cass, G. R. (1984). Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: Experiment vs theory. Atmospheric Environment, 18, 1737–1750.

    Article  CAS  Google Scholar 

  • Hopke, P. K. (1985). Receptor modeling in environmental chemistry. New York: Wiley.

    Google Scholar 

  • Jakovljević, M. D., Kostić, N. M., & Antić-Mladenović, S. B. (2003). The availability of base elements (Ca, Mg, Na, K) in some important soil types in Serbia. In R. Kastori (Ed.), Proceedings for natural sciences (104, pp. 11–21). Novi Sad: Matica Srpska.

    Google Scholar 

  • Katsoulis, B. D., & Whelpdale, D. M. (1990). Atmospheric sulfur and nitrogen budgets for southeast Europe. Atmospheric Environment, 24, 2959–2970.

    Google Scholar 

  • Khawaja, H. A., & Husain, L. (1990). Chemical characterization of acid precipitation in Albany, New York. Atmospheric Environment, 24A, 1869–1882.

    Google Scholar 

  • Kulshrestha, U. C., Granatb, L., Engardt, M., & Rodhe, H. (2005). Review of precipitation monitoring studies in India—A search for regional patterns. Atmospheric Environment, 39, 7403–7419.

    Article  CAS  Google Scholar 

  • Lee, D. S, & Pacyna, J. M. (1999). An industrial emissions inventory of calcium for Europe. Atmospheric Environment, 33, 1687–1697.

    Article  CAS  Google Scholar 

  • Likens, G. E. (1992). The ecosystem approach: Its use and abuse. Olendorf/Luhe, Germany: Ecology Institute.

    Google Scholar 

  • Marquardt, W., Bruggemann, E., Auel, R., Herrmann, H., & Moller, D. (2001). Trends of pollution in rain over East Germany caused by changing emissions. Tellus, 53, 529–545.

    Google Scholar 

  • Migliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C. M., & Sanchez, J. (2005). Atmospheric precipitation and chemical composition of an urban site, Guaýba hydrographic basin, Brazil. Atmospheric Environment, 39, 1829–1844.

    Article  CAS  Google Scholar 

  • Mouli, P. C., Mohan, S. V., & Reddy, S. J. (2005). Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition. Atmospheric Environment, 39, 999–1008.

    Article  CAS  Google Scholar 

  • Munger, J. W., & Eisenreich, S. J. (1983). Continental-scale variations in precipitation chemistry. Environmental Science and Technology, 17, 32A–42A.

    Article  CAS  Google Scholar 

  • Naik, M. S., Momin, G. A., Rao, P. S. P., Safai, P. D., & Ali, K. (2002). Chemical composition of rainwater around an industrial region in Mumbai. Current science, 82, 1131–1137.

    CAS  Google Scholar 

  • Pelicho, A. F., Martins, L. D., Nomi, S. N., & Solci, M. K. (2006). Integrated and sequential bulk and wet-only samplings of atmospheric precipitation in Londrina, South Brazil (1998–2002). Atmospheric Environment, 40, 6827–6835.

    Article  CAS  Google Scholar 

  • Polkowska, Z., Astel, A., Walna, B., Maek, S., Medrzycka, K., Gorecki, T., et al. (2005). Chemometric analysis of rainwater and throughfall at several sites in Poland. Atmospheric Environment, 39, 837–855.

    Article  CAS  Google Scholar 

  • Possanzini, M., Buttini, P., & Dipalo, V. (1988). Characterization of a rural area in terms of dry and wet deposition. Science of the Total Environment, 74, 111–120.

    Article  CAS  Google Scholar 

  • Protić, N., Martinović, Lj., Miličić, B., Stevanović, D. & Mojašević M. (2005). The status of soil surveys in Serbia and Montenegro, European Soil Bureau. Research Report, 9, 297–315.

    Google Scholar 

  • Raemdonck, H., Maenhaut, W., & Andreae, M. 0. (1986). Chemistry of marine aerosol over the tropical and equatorial Pacific. Journal of Geophysics Research, 91, 8623–8636.

    Article  CAS  Google Scholar 

  • Sanusi, A., Wortham, H., Millet, M. & Mirabel, P. (1996). Chemical composition of rainwater in Eastern France. Atmospheric Environment, 30, 59–71.

    Article  CAS  Google Scholar 

  • Satsangi, G. S., Lakhani, A., Khare, P., Singh, S. P., Kumari, K. M., & Srivastave, S. S. (1998). Composition of rain water at a semi-arid rural site in India. Atmospheric Environment, 32, 3783–3793.

    Article  CAS  Google Scholar 

  • Saxena, A., Kulshrestha, U. C., Kumar, N., Kumari, K. M., & Srivastava, S. S. (1996). Characterization of precipitation at Agra. Atmospheric Environment, 30, 3405–3412.

    Article  CAS  Google Scholar 

  • Sigha-Nkamdjou, L., Galy-Lacaux, C., Pont, V., Richard, S., Sighoumnou, D., & Lacaux, J. P. (2003). Rainwater chemistry and wet deposition over the equatorial forested ecosystem of Zoetele (Cameroon), Journal of Atmospheric Chemistry, 46, 173–198.

    Article  CAS  Google Scholar 

  • Škrbić, B., Nedeljković, J. & Miljević, N.(2002). Mobility of heavy metals originating from bombing of industrial sites. Journal of Environmental Science and Health, A37, 7–16.

    Google Scholar 

  • Stosić, M. (2006). Country pasture/forage resource profiles, Serbia and Montenegro. Available from: http://www.fao.org/ag/AGP/AGPC/doc/Counprof/serbiamontenegro/serbiamont.htm#1a.

  • Tuncer, B., Bayar, B., Yesilyurt, C. & Tuncel, G. (2001). Ionic composition of precipitation at the Central Anatolia (Turkey). Atmospheric Environment, 5, 5989–6002.

    Article  Google Scholar 

  • WMO (World Meteorological Organization) (2004). Manual for the GAW precipitation chemistry programme. Guidelines, data quality objectives and standard operating procedures. Global Atmosphere Watch, no. 160, (Allan, M.A. Ed.).

  • Zimmermann, F., Lux, H., Maenhauc, W., Matschullat, J., Plessow, K., Reuter, F., et al. (2003). A review of air pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmospheric Environment, 37, 671–691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Miljević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golobočanin, D., Žujić, A., Milenković, A. et al. Precipitation composition and wet deposition temporal pattern in Central Serbia for the period from 1998 to 2004. Environ Monit Assess 142, 185–198 (2008). https://doi.org/10.1007/s10661-007-9919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9919-4

Keywords

Navigation