Skip to main content
Log in

Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alef, K. (1995). Enrichment of fungi. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 145). London: Academic.

    Google Scholar 

  • Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1993). Bioremediation in the rhizosphere. Environmental Science & Technology, 27(13), 2630–2635.

    Article  CAS  Google Scholar 

  • Bais, P. B., Park, S.-W., Weir, T. L., Callway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. TRENDS in Plant Science 9(1), 26–32.

    Article  CAS  Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27, 355–384.

    Article  CAS  Google Scholar 

  • Bernier, M., Popovic, R., & Carpentier, R. (1993). Mercury inhibition at the donor side of photosystem II is reversed by chloride. FEBS Letters, 321, 19–23.

    Article  CAS  Google Scholar 

  • Berti, W. R., & Cunningham, S. D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals (pp. 71–88). New York: Wiley.

    Google Scholar 

  • Biester, H., Muller, G., & Scholer, H. F. (2002). Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants: Part I. The Science of the Total Environment, 284, 177–189.

    Article  CAS  Google Scholar 

  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 1335–1351.

    Article  CAS  Google Scholar 

  • Byrne, A. R., & Kosta, L. (1970). Studies on the distribution and uptake of mercury in the area of the mercury mine at Idrija, Slovenia (Yugoslavia). Vestnik Slovenskega Kemijskega Drusštva, 17, 5–11.

    CAS  Google Scholar 

  • Cavalini, A., Natali, L., Durante, M., & Maserti, B. (1999). Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. The Science of the Total Environment, 243/244, 119–127.

    Article  Google Scholar 

  • Godbold, D. L. (1991). Mercury-induced root damage in spruce seedlings. Water, Air and Soil Pollution, 56, 823–831.

    Article  CAS  Google Scholar 

  • Grant, M. A., & Holt, J. G. (1977). Medium for the selective isolation of members of the genus Pseudomonas from natural habitats. Applied and Environmental Microbiology, 33, 1222–1224.

    CAS  Google Scholar 

  • Huckabee, J. W., Sanz Diaz, F., Janzen, S. A., & Solomon, J. (1983). Distribution of mercury in vegetation at Almaden, Spain. Environmental Pollution (Series A), 30, 211–224

    Article  CAS  Google Scholar 

  • Johansson, I., Karlsson, M., Johanson, U., Larsson, C., & Kjellbom, P. (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta, 1465, 324–342.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.

    Google Scholar 

  • Laperche, V., Logan, T. J., Gaddam, P., & Traina, S. J. (1997). Effect of apatite amendments on plant uptake of lead from contaminated soil. Environmental Science & Technology, 31, 2745–2753.

    Article  CAS  Google Scholar 

  • Lind, A. M., & Eiland, F. (1989). Microbiological characterization and nitrite reduction in subsurface soils. Biology and Fertility of Soils, 8, 197–203.

    Article  CAS  Google Scholar 

  • Marschner, H., Römheld, V., Horst, W. J., & Martin, P. (1986). Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung und Bodenkunde, 149, 441–456.

    Article  CAS  Google Scholar 

  • Marschner, P., Yang, C.-H., Lieberi, R., & Crowley, D. E. (2001). Soil and plant specific effect on bacterial community composition in the rhizosphere. Soil Biology & Biochemistry, 33, 1437–1445.

    Article  CAS  Google Scholar 

  • Maserati, E. B., & Ferrara, R. (1991). Mercury in plants, soil and atmosphere near a chlor-alkali complex. Water, Air, and Soil Pollution, 56, 15–20.

    Article  Google Scholar 

  • Meagher, R. B., Rugh, C. L., Kandasamy, M. K., Gragson, G., & Wang, N. J. (2000). Engineering phytoremediation of mercury pollution in soil and water using bacterial genes. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 201–219). USA: Lewis.

    Google Scholar 

  • Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2005). Mercury volatilisation and phytoextraction from base-metal mine tailings. Environmental Pollution, 136, 341–352.

    Article  CAS  Google Scholar 

  • Pisman, T. J., Pechurkin, N. S., Mariasova, T. S., Somova, L. A., & Sarangova, A. B. (1999). A mathematical model of “plants-microorganisms” interaction on complete mineral medium and under nitrogen limitation. Advances in Space Research, 24(3), 383–387.

    Article  CAS  Google Scholar 

  • Polish Governmental Gazette. (2002). Dz.U. Nr 165, poz.1359.

  • Rugh, C. L., Bizily, S. P., & Meagher, R. B. (2000). Phytoreduction of environmental mercury pollution. Phytoremediation of toxic metals (pp. 151–169). New York: Wiley.

    Google Scholar 

  • Schwesig, D., Ilgen, G., & Kiayias, G. (1999). Mercury and methylmercury in upland and wetland acid forest soils of a watershed in NE-Bavaria, Germany. Water, Air and Soil Pollution, 113, 141–154.

    Article  CAS  Google Scholar 

  • Siegel, S. M., Puerner, N. J., & Speitel, T. W. (1974). Release of volatile mercury from vascular plants. Physiological Plant, 32, 174–176.

    Article  CAS  Google Scholar 

  • Silver, S. (1996). Bacterial resistances to toxic metal ions — A review. Gene, 179, 9–19.

    Article  CAS  Google Scholar 

  • Sindhu, S. S., Sunita Suneja, Goel, A. K., Parmar, N., & Dadarwal, K. R. (2002). Plant growth promoting effects of Pseudomonas sp.on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Applied Soil Ecology, 19, 57–64.

    Article  Google Scholar 

  • Suszcynsky, E. M., & Shann, I. R. (1995). Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environmental Phytotoxicology and Chemistry, 14(1), 61–67.

    Article  CAS  Google Scholar 

  • Wallschläger, D., Desai, M. V. M., Spengler, M., & Wilken, R. D. (1998). Mercury speciation in floodplain soils and sediments along a contaminated river transect. Journal of Environmental Quality, 27, 1034–1044.

    Article  Google Scholar 

  • Zielonka, U., Kucharski, R., Sas-Nowosielska, A., & Kuperberg, J. M. (2001). An approach to the remediation of mercury polluted area. Part I. Preliminary site characterization. In B. Gworek & A. Mocek (Eds.), Element cycling in the environment bioaccumulation-toxicity-prevention European integration (pp. 349–352). Monograph I, IOS.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Sas-Nowosielska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sas-Nowosielska, A., Galimska-Stypa, R., Kucharski, R. et al. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137, 101–109 (2008). https://doi.org/10.1007/s10661-007-9732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9732-0

Keywords

Navigation