Skip to main content
Log in

Evaluating Ecological Condition Using Soil Biogeochemical Parameters and Near Infrared Reflectance Spectra

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rapid, repeatable assessment of ecological condition is critical for quantitative ecosystem monitoring. Soils provide a sensitive, integrative indicator for which sampling and analysis techniques are well defined. We evaluated soil properties as indicators of ecological condition (subjectively classified into minimally/moderately/severely degraded based on vegetative, hydrologic and edaphic cues) at 526 sites within Ft. Benning military installation (Georgia, USA). For each sample, we measured 17 biogeochemical parameters, and collected high-resolution diffuse reflectance spectra using visible/near infrared reflectance spectroscopy (VNIRS). VNIR spectra have been related to numerous soil attributes — we examine them here for diagnosing integrated response (i.e., ecological condition). We used ordinal logistic regression (OLR) and classification trees (CT) to discriminate between condition categories using both sets of predictors (biogeochemistry and spectra). Sixteen biogeochemical parameters were significantly different across condition categories; however, multivariate models greatly improved discrimination ([calibration, validation] accuracy of [69%, 66%] and [96%, 73%] for OLT and CT models, respectively). Important predictors included total C, total P, and Mehlich K/Ca/Mg. VNIR spectra further improved discrimination ([calibration, validation] accuracy of [74%, 70%] and [96%, 75%] for OLR and CT models, respectively). While spectra were comparably effective at discriminating minimally degraded sites, they were significantly more effective at discriminating severely degraded sites. Error rates across confounding factors suggest that watershed of origin and landscape position were the only important confounders, likely due to imbalanced sampling. We conclude that multivariate diagnosis improves accuracy, and that VNIR spectroscopy, which yields substantial cost and logistical improvements over conventional analyses, provides an effective tool for rapid condition diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A.: 1990, Categorical Data Analysis, Wiley-Interscience, NY.

    Google Scholar 

  • Amacher, M. C.: 1996, ‘Double acid (Mehlich I) method’, in: J. M. Bigham (ed), Methods of Soil Analysis Part 3: Chemical Methods, SSSA-ASA, Madison, WI, pp. 739–768.

    Google Scholar 

  • Anderson, J. M.: 1976, ‘An ignition method for determination of total phosphorus in lake sediments’, Water Res. 10, 329–331.

    Article  Google Scholar 

  • Bacchus, S. T., Archibald, D. D., Brook, G. A., Britton, K. O., Haines, B. L., Rathbun, S. L. and Madden, M.: 2003, ‘Near-infrared spectroscopy of a hydroecological indicator: New tool for determining sustainable yield for Floridan aquifer system’, Hydrol. Process. 17, 1785–1809.

    Article  Google Scholar 

  • Barbour, M. T., Gerritsen, J. and White, J. S.: 1996, ‘Development of the stream condition index for Florida’. Florida Department of Environmental Protection, Tallahassee, FL.

    Google Scholar 

  • Ben-Dor, E. and Banin, A.: 1995, ‘Near infrared analysis (NIRA) as a rapid method to simultaneously evaluate several soil properties’, Soil Sci. Soc. Am. J. 59, 364–372.

    Article  CAS  Google Scholar 

  • Bertsch, P. M. and Bloom, P. R.: 1996, ‘Ammonium Oxalate Extractable Iron and Aluminum’, in: J. M. Bigham (ed), Methods of Soil Analysis Part 3: Chemical Methods, SSSA-ASA, Madison, WI, pp. 517–550.

    Google Scholar 

  • Bouchard, V., Gillon, D., Joffre, R. and Lefeuvre, J. C.: 2002, ‘Actual litter decomposition rates in salt marshes measured using near-infrared reflectance’, J. Exp. Mar. Biol. Ecol. 290, 149–163.

    Article  Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A.: 1984, Classification and Regression Trees, Chapman & Hall, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Brookes, P. C., Powlson, D. S. and Jenkinson, D. S.: 1982, ‘Measurement of microbial biomass phosphorus in soil’, Soil Biol. Biochem. 14, 319–329.

    Article  CAS  Google Scholar 

  • Bunn, S. E., Davies, P. M. and Mosisch, T. D.: 1999, ‘Ecosystem measures of river health and their response to riparian and catchment degradation’, Freshwater Biol. 41, 333–345.

    Article  Google Scholar 

  • Carlson, R. E.: 1977, ‘A trophic state index for lakes’, Limnol. Oceanogr. 22, 361–369.

    Article  CAS  Google Scholar 

  • Chang, C. W., Laird, D. A., Mausbach, M. J. and Hurburgh, C. R.: 2001, ‘Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties’, Soil Sci. Soc. Am. J. 65, 480–490.

    Article  CAS  Google Scholar 

  • Clark, R. N.: 1999, ‘Spectroscopy of rocks and minerals, and principles of spectroscopy’, in: N. Rencz (ed), Remote Sensing for the Earth Sciences: Manual of Remote Sensing —Vol. 3. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Cohen, M. J.: 2003, ‘Systems Evaluation of Erosion and Erosion Control in a Tropical Watershed’. PhD Diss., University of Florida, Gainesville, FL (Diss. Abstr. AAT 3105599).

  • Cozzolino, D. and Moron, A.: 2003, ‘The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics’, J. Agric. Sci. (Cambridge) 140, 65–71.

    CAS  Google Scholar 

  • Dale, V. H., Beyeler, S. C. and Jackson, B.: 2002, ‘Understory vegetation indicators of anthropogenic disturbance in longleaf pine forests at Fort Benning, Georgia, USA’, Ecol. Indicators 1, 155–170.

    Article  Google Scholar 

  • DeBusk, W. F. and Reddy, K. R.: 1998, ‘Turnover of detrital organic carbon in nutrient-impacted Everglades marsh’, Soil Sci. Soc. Am. J. 62, 1460–1468.

    Article  CAS  Google Scholar 

  • Dunn, B. W., Batten, G. W. and Ciavarella, S.: 2002, ‘The potential of near-infrared reflectance spectroscopy for soil analysis —a case study from the Riverine Plain of south-eastern Australia’, Aust. J. Exp. Agric. 42, 607–614.

    Article  Google Scholar 

  • Fearn, T.: 2000, ‘Savitzky-Golay filters’, NIR News 6, 14–15.

    Google Scholar 

  • Fischer J. E., Bachman, L. M. and Jaeschke, R.: 2003, ‘A readers’ guide to the interpretation of diagnostic test properties: Clinical example of sepsis’, Intensive Care Med. 29, 1043–1051.

    Article  Google Scholar 

  • Fystro, G.: 2002, ‘The prediction of C and N content and their potential mineralization in heterogeneous soil samples using Vis-NIR spectroscopy and comparative methods’, Plant Soil 246, 139–149.

    Article  CAS  Google Scholar 

  • Ghosh, S.N.: 1978, ‘Infra-red spectra of some selected minerals, rocks and products’, J. Mater. Sci. 13, 1877–1886.

    Article  CAS  Google Scholar 

  • Gillon, D., Houssard, C. and Joffe, R.: 1999, ‘Using near-infrared reflectance spectroscopy to predict carbon nitrogen and phosphorus content in heterogeneous plant material’, Oecologia (Berlin) 118, 173–182.

    Article  Google Scholar 

  • Gregorich, E. G., Carter, M. R., Doran, J. W., Pankhurst, C. E. and Dwyer, L. M.: 1997, ‘Biological attributes of soil quality’, in: E. G. Gregorich and M. R. Carter (eds), Soil Quality for Crop Production and Ecosystem Health, Elsevier, New York, NY, pp. 81–114.

    Google Scholar 

  • Gunzler, H. and Gremlich, H. U.: 2002, IR Spectroscopy: An Introduction, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Hargreaves, P. R., Brookes, P. C., Ross, G. J. S. and Poulton, P. R.: 2003, ‘Evaluating soil microbial biomass carbon as an indicator of long-term environmental change’, Soil Biol. Biochem. 35, 401–407.

    Article  CAS  Google Scholar 

  • Horwath, W. R. and Paul, E. A.: 1994, ‘Microbial biomass’, in: R. W. Weaver (ed), Methods of Soil Analysis Part 2: Microbiological and Biochemical Properties, SSSA-ASA, Madison, WI, pp. 753–773.

    Google Scholar 

  • Hosmer, D. W. and Lemeshow, S.: 1989, Applied Logistic Regression, Wiley, New York, NY.

    Google Scholar 

  • Hunt, G. R.: 1982, ‘Spectroscopic properties of rocks and minerals’, in: R. S. Carmichael (ed), Handbook of Physical Properties of Rocks, CRC Press, Boca Raton, FL, pp. 295–385.

    Google Scholar 

  • Janik, L. J., Merry, R. H. and Skjemsted, J. O.: 1998, ‘Can mid-infrared diffuse reflectance analysis replace soil extractions’? Aust. J. Exp. Agric. 38, 681–696.

    Article  Google Scholar 

  • Johnston, C. T. and Aiochi, Y. O.: 1996, ‘Fourier Transform Infrared and Raman Spectroscopy’, in: J. M. Bigham (ed), Methods of Soil Analysis Part 3: Chemical Methods, SSSA-ASA, Madison, WI, pp. 269–321.

    Google Scholar 

  • Knoepp, J. D., Coleman, D. C., Crossley Jr., D. A. and Clark, J. S.: 2000, ‘Biological indices of soil quality: An ecosystem case study of their use’, For. Ecol. Man. 357–368.

  • Kooistra, L., Wehrens, R., Leuven, R. S. and Buydnes, L. M. C.: 1997, ‘Possibilities of visible-near infrared spectroscopy for the assessment of soil contamination in river floodplains’, Anal. Chem. 446, 97–105.

    Google Scholar 

  • Kuo, S.: 1996, ‘Phosphorus’, in: J. M. Bigham (ed), Methods of Soil Analysis Part 3: Chemical Methods, SSSA ASA, Madison, WI, pp. 869–919.

    Google Scholar 

  • Nelson, D. W. and Sommers, L. E.: 1996, ‘Total Carbon and Total Nitrogen’, in: J. M. Bigham (ed), Methods of Soil Analysis Part 3: Chemical Methods, SSSA ASA, Madison, WI, pp. 961–1010.

    Google Scholar 

  • Osborne, B. G.: 1983, ‘Near-Infrared Reflectance Spectroscopy in the Analysis of Cereal Products’, J. Sci. Food Agric. 34, 1027–1028.

    Google Scholar 

  • Peng, C., Liu, J., Dang, Q., Zhou, X. and Apps, M.: 2002, ‘Developing carbon-based ecological indicators to monitor sustainability of Ontario’s forests’, Ecol. Ind. 1, 235–246.

    Article  CAS  Google Scholar 

  • Prenger, J. P., DeBusk, W. F. and Reddy, K. R.: 2004, ‘Response of soil enzymes and chemistry to military training and land management’, For. Ecol. Manage. (in review).

  • Reeves, J. B., McCarty, G. W. and Meisinger, J. J.: 1999, ‘Near infrared reflectance spectroscopy for the analysis of agricultural soils,’ J. Near Inf. Spec. 7, 179–193.

    CAS  Google Scholar 

  • Reeves, J. B., McCarty, G. W. and Meisinger, J. J.: 2000, ‘Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils,’ J. Near Inf. Spec. 8, 161–170.

    Article  CAS  Google Scholar 

  • Shepherd, K. D. and Walsh, M. G.: 2002, ‘Development of reflectance spectral libraries for characterization of soil properties’, Soil Sci. Soc. Am. J. 66, 988–998.

    Article  CAS  Google Scholar 

  • Shepherd, K. D. and Walsh, M. G.: 2004, ‘Soil Fertility Chemometrics from Diffuse Reflectance Spectra’. Geoderma (in review).

  • Silveira, M. L., Skulnick, B., DeBusk, W. F., Prenger, J., Comerford, N. B. and Reddy, K. R.: 2004, ‘Soil carbon alterations in low impact and military training areas in a southern Georgia landscape’, For. Ecol. Manage. (in review).

  • Simon, T. P., Jankowski, R. and Morris, C.: 2000, ‘Modification of an index of biotic integrity for assessing vernal ponds and small palustrine wetlands using fish, crayfish, and amphibian assemblages along southern Lake Michigan’, Aquatic Ecosyst. Health Manage. 3, 407–418.

    Article  Google Scholar 

  • Sparling, G. P., Feltham, C. W., Reynolds, J., West, A. W. and Singleton, P.: 1990, ‘Estimation of soil microbial C by a fumigation-extraction method: Use on soils of high organic matter content and a reassessment of the KEC factor’, Soil Biol. Biochem. 22, 301–307.

    Article  Google Scholar 

  • StatSoft Inc.: 2004. Statistica v.6.1., Tulsa, OK.

  • Steinberg, D. and Colla, P.: 1997, CART —Classification and Regression Trees. Release 4.0. Salford Systems, San Diego, CA.

    Google Scholar 

  • Urban, D. L.: 2002, ‘Classification and regression trees’, in: B. McCune and J. B. Grace (eds), Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR, pp. 222–233.

    Google Scholar 

  • U.S. Environmental Protection Agency (US EPA): 1991, Methods for the Determination of Metals in Environmental Samples 200.7. Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnatti, OH.

    Google Scholar 

  • U.S. Environmental Protection Agency (US EPA): 1993, Methods for the Determination of Inorganic Substances in Environmental Samples 365.1. Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnatti, OH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, M.J., Dabral, S., Graham, W.D. et al. Evaluating Ecological Condition Using Soil Biogeochemical Parameters and Near Infrared Reflectance Spectra. Environ Monit Assess 116, 427–457 (2006). https://doi.org/10.1007/s10661-006-7664-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-7664-8

Keywords

Navigation