Skip to main content
Log in

Assessing the Accuracy of Soil and Water Quality Characterization Using Remote Sensing

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Assessing the risks of agricultural management practices on agro-ecosystem sustainability has special relevance in Ohio, USA due to the states prominence in agricultural production. However, identifying detrimental management practices remains controversial, a situation that may explain the inability to halt the recurring harmful algal blooms in inland waters, or the build-up of nutrients in the agricultural soils. Thus, detailed and accurate information is required to identify soils and water susceptible to degradation, and to support counteractive remedial measures. In this study soil and water spectral reflectance data were acquired with an Analytical Spectral Device, and modeled with laboratory measured physical and chemical properties using the Analysis of Variance (ANOVA) and decision trees. Results reveal no site differences in pH for the water, but the differences in electrical conductivity (EC) were significant. Similarly, the pH for soils did not vary significantly with depth increments. However, the no till (NT) managed soils had significantly higher pH. EC varied with depth of the water, whereas the soil carbon: nitrogen (C/N) ratio varied with management in 4 out of 5 sites. Finally, this study shows that remotely sensed data can be utilized to effectively characterize agricultural management practices based on inherent soil and water properties, thus providing information critical for assessing the efficacy of Water Quality Trading initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Thermo Scientific, Orion Star Series, Made in Singapore

  2. http://www.asdi.com/products/fieldspec-spectroradiometers/fieldspec-4-hi-res

References

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    Article  Google Scholar 

  • Arnold JG et al (2012) SWAT: model use, calibration, and validation. Trans of the Asabe 55:1491–1508

    Article  Google Scholar 

  • Batjes NH (2011) Soil organic carbon stocks under native vegetation – revised estimates for use with the simple assessment option of the carbon benefits project system. Agric Ecosyst Environ 142:365–373

    Article  Google Scholar 

  • Bentler PM, Dudgeon P (1996) Covariance structure analysis: statistical practice, theory, and directions. Annu Rev Psychol 47:563–592. doi:10.1146/annurev.psych.47.1.563

    Article  Google Scholar 

  • Berk A, Bernstein LS, Anderson GP, Acharya PK, Robertson DC, Chetwynd JH, Adler-Golden SM (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens Environ 65:367–375. doi:10.1016/s0034-4257(98)00045-5

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2007) Impacts of long-term wheat straw management on soil hydraulic properties under No-tillage. Soil Sci Soc Am J 71:1166–1173. doi:10.2136/sssaj2006.0411

    Article  Google Scholar 

  • Bosch NS, Allan JD, Selegean JP, Scavia D (2013) Scenario-testing of agricultural best management practices in Lake Erie watersheds. J Great Lakes Res 39:429–436. doi:10.1016/j.jglr.2013.06.004

    Article  Google Scholar 

  • Bouma J, McBratney A (2013) Framing soils as an actor when dealing with wicked environmental problems. Geoderma 200–201:130–139. doi:10.1016/j.geoderma.2013.02.011

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors Mach Learn 24:123–140. doi:10.1023/a:1018054314350

    Google Scholar 

  • Breiman L (2001) Random forests Mach Learn 45:5–32. doi:10.1023/a:1010933404324

    Article  Google Scholar 

  • Breiman L, J.H. F, A. OR, C.J. S (1984) Classification and regression trees. Chapman and Hall, Boca Raton, FL

  • Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290. doi:10.1016/j.geoderma.2005.04.025

    Article  Google Scholar 

  • Clement CR (1996) A simple and liable tension table Journal of Soil Science 17

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46

    Article  Google Scholar 

  • Congalton RG, Oderwald RG, Mead RA (1983) Assessing Landsat classification accuracy using multivariate-analysis statistical techniques. Photogramm Eng Remote Sens 49:1671–1678

    Google Scholar 

  • Cude CG (2001) Oregon water quality index a tool for evaluating water quality management effectiveness. JAWRA J of the Am Water Resour Assoc 37:125–137. doi:10.1111/j.1752-1688.2001.tb05480.x

    Article  Google Scholar 

  • Dane JH, Hopmans JW (eds) (2002) Water retention and storage vol 5. Methods of Soil Analysis: Part 4 Physical Methods, vol 4. Agronomy Monograph, Madison, WI. doi:10.2136/sssabookser5.4.c25

  • De Fries RS, Hansen M, Townshend JRG, Sohlberg R (1998) Global land cover classifications at 8 km spatial resolution: the use of training data derived from landsat imagery in decision tree classifiers. Int J Remote Sens 19:3141–3168

    Article  Google Scholar 

  • de Paul OV (2007) Remote sensing: new applications for urban areas. Proc IEEE 95:2267–2268. doi:10.1109/jproc.2007.908065

    Article  Google Scholar 

  • de Paul OV, Lal R, Chen J (2013) Remote sensing of soil and water quality in agroecosystems. Water Air Soil Pollut 224:1–27. doi:10.1007/s11270-013-1658-2

    Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils soil. Sci Soc Am J 69:500–510. doi:10.2136/sssaj2005.0500

    Article  Google Scholar 

  • DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC (2012) Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry 109:189–202. doi:10.1007/s10533-011-9619-6

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796. doi:10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  • FAO (1996) Control of water pollution from agriculture. GEMS/Water Collaborating Centre, Canada Centre for Inland Waters

  • Fisher-Vanden K, Olmstead S (2013) Moving pollution trading from Air to water: potential problems, and prognosis. J Econ Perspect 27:147–171. doi:10.1257/jep.27.1.147

    Article  Google Scholar 

  • Freeman MIA (2000) Water pollution policy, 2 edn., Washington, D.C.

  • Ghosh G, Ribaudo M, Shortle J (2011) Baseline requirements can hinder trades in water quality trading programs: evidence from the Conestoga watershed. J Environ Manag 92:2076–2084. doi:10.1016/j.jenvman.2011.03.029

    Article  Google Scholar 

  • Giri C, Pengra B, Long J, Loveland TR (2013) Next generation of global land cover characterization, mapping, and monitoring. Int J of Appl Earth Obs and Geoinformation 25:30–37. doi:10.1016/j.jag.2013.03.005

    Article  Google Scholar 

  • Glass GV, Peckham PD, Sanders JR (1972) Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. Rev Educ Res 42:237–288. doi:10.3102/00346543042003237

    Article  Google Scholar 

  • Gomes A, Pires JM, Figueiredo S, Boaventura RR (2014) Optimization of river water quality surveys by multivariate analysis of physicochemical bacteriological and ecotoxicological. Data Water Resour Manag 28:1345–1361. doi:10.1007/s11269-014-0547-9

    Article  Google Scholar 

  • Hansen M, Dubayah R, DeFries R (1996) Classification trees: an alternative to traditional land cover classifiers international. J of Remote Sens 17:1075–1081

    Article  Google Scholar 

  • Hansen MC, Defries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364

    Article  Google Scholar 

  • Heung B, Bulmer CE, Schmidt MG (2014) Predictive soil parent material mapping at a regional-scale: a random forest approach. Geoderma 214–215:141–154. doi:10.1016/j.geoderma.2013.09.016

    Article  Google Scholar 

  • Hothorn T, Everitt BS (2006) A handbook of statistical analyses using R. Taylor and Francis Group, LLC, Boca Raton, Florida

    Google Scholar 

  • SAS Institute (2009) SAS OnlineDoc® 9.2. Cary, NC: SAS Institute Inc. http://www.sas.com/technologies/analytics/statistics/stat/index.html. Accessed 2012

  • Jemai I, Ben Aissa N, Ben Guirat S, Ben-Hammouda M, Gallali T (2013) Impact of three and seven years of no-tillage on the soil water storage, in the plant root zone, under a dry subhumid. Tunis clim Soil & Tillage Res 126:26–33. doi:10.1016/j.still.2012.07.008

    Article  Google Scholar 

  • Klute A (1986) Water retention: laboratory methods methods of soil analysis: part 1—physical and mineralogical methods sssabookseries:635–662 doi:10.2136/sssabookser5.1.2ed.c26

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods methods of soil analysis: part 1—physical and mineralogical methods sssabookseries:687–734 doi:10.2136/sssabookser5.1.2ed.c28

  • Kovacs B, Prokisch J, Gyori Z, Kovacs AB, Palencsar AJ (2000) Studies on soil sample preparation for inductively coupled plasma atomic emission spectrometry analysis. Commun Soil Sci Plant Anal 31:1949–1963. doi:10.1080/00103620009370553

    Article  Google Scholar 

  • Lal R (1996) Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria. Soil chem prop Land Degrad & Dev 7:87–98. doi:10.1002/(sici)1099-145x(199606)7:2<87::aid-ldr219>3.0.co;2-x

    Article  Google Scholar 

  • Lal R (2001) Managing world soils for food security and environmental quality. Adv Agron 74:155–192. doi:10.1016/s0065-2113(01)74033-3

    Article  Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990. doi:10.1016/j.envint.2004.03.005

    Article  Google Scholar 

  • Lal R (2013) Climate-strategic agriculture and the water-soil-waste nexus. J Plant Nutr Soil Sci 176:479–493. doi:10.1002/jpln.201300189

    Article  Google Scholar 

  • Lal R, Delgado JA, Gulliford J, Nielsen D, Rice CW, Van Pelt RS (2012) Adapting agriculture to drought and extreme events. J Soil Water Conserv 67:162A–166A. doi:10.2489/jswc.67.6.162A

    Article  Google Scholar 

  • Lentz AH, Ando AW, Brozovicć N (2013) Water quality trading with lumpy investments, credit stacking, and ancillary benefits. JAWRA J of the Am Water Resour Assoc. doi:10.1111/jawr.12117

    Google Scholar 

  • Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil Fertility and Biodiversity in Organic Farming Science 296:1694–1697 doi:10.1126/science.1071148

  • Mantzafleri N, Psilovikos A, Blanta A (2009) Water quality monitoring and modeling in lake Kastoria, using GIS assessment and management of pollution sources. Water Resour Manag 23:3221–3254. doi:10.1007/s11269-009-9431-4

    Article  Google Scholar 

  • Mariola MJ (2012) Farmers, trust, and the market solution to water pollution: the role of social embeddedness in water quality trading. J Rural Stud 28:577–589

    Article  Google Scholar 

  • Mattikalli NM, Richards KS (1996) Estimation of surface water quality changes in response to land use change: application of the export coefficient model using remote sensing and geographical information system. J Environ Manag 48:263–282. doi:10.1006/jema.1996.0077

    Article  Google Scholar 

  • MC Donagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. ChemInform 39:18

    Google Scholar 

  • McDowell ML, Bruland GL, Deenik JL, Grunwald S, Knox NM (2012) Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma 189–190:312–320. doi:10.1016/j.geoderma.2012.06.009

    Article  Google Scholar 

  • McKergow LA, Weaver DM, Prosser IP, Grayson RB, Reed AEG (2003) Before and after riparian management: sediment and nutrient exports from a small agricultural catchment, Western Australia. J Hydrol 270:253–272. doi:10.1016/S0022-1694(02)00286-X

    Article  Google Scholar 

  • McVicar TR, Jupp DLB (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review Agricultural Systems 57:399–468 doi:http://dx.doi.org/10.1016/S0308-521X(98)00026-2

  • Michalak AM et al (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci. doi:10.1073/pnas.1216006110

    Google Scholar 

  • Modaresi F, Araghinejad S (2014) A comparative assessment of support vector machines probabilistic neural networks, and K-nearest neighbor algorithms for water quality classification. Water Resour Manag 28:4095–4111. doi:10.1007/s11269-014-0730-z

    Article  Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Model 62:275–293. doi:10.1016/0304-3800(92)90003-w

    Article  Google Scholar 

  • Moore R (2013) School of Environment and Natural Resources (SENR), The Ohio State University, personal communication

  • Moore RH, Parker JS, Weaver M (2008) Agricultural sustainability, water pollution, and governmental regulations: lessons from the sugar creek farmers in Ohio. Culture & Agric 30:3–16. doi:10.1111/j.1556-486X.2008.00003.x

    Article  Google Scholar 

  • Nelson DW, Sommers LE (eds) (1982) Total carbon, organic carbon, and organic matter methods of soil analysis. Part 2. American Society of Agronomy and Soil Science Society of American, Madison, Wisconsin

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL et al (eds) Am. Soc. of Agron., vol 9. vol 5, 2nd edn. SSA, Madison, WI, pp 961–1010

    Google Scholar 

  • Newburn DA, Woodward RT (2012) An Ex post evaluation of Ohio’s great Miami water quality trading Program1 JAWRA. J Am Water Resour Assoc 48:156–169

    Article  Google Scholar 

  • Peech M (1965) Hydrogen ion activity. In: ASA Monograph, vol 9. Methods of Soil Analysis, Part 2 edn., ASA, Madison, WI, pp 914–925

  • Rahman S, Hossain F (2008) Spatial assessment of water quality in peripheral rivers of Dhaka city for optimal relocation of water intake point. Water Resour Manag 22:377–391. doi:10.1007/s11269-007-9167-y

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023. doi:10.1093/jxb/erj108

    Article  Google Scholar 

  • Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80:5–22. doi:10.1016/j.agwat.2005.07.001

    Article  Google Scholar 

  • Rosenzweig C, Strzepek KM, Major DC, Iglesias A, Yates DN, McCluskey A, Hillel D (2004) Water resources for agriculture in a changing climate: international case studies. Glob Environ Chang-Human and Policy Dimens 14:345–360. doi:10.1016/j.gloenvcha.2004.09.003

    Article  Google Scholar 

  • Rundel PW, Graham EA, Allen MF, Fisher JC, Harmon TC (2009) Environmental sensor networks in ecological research. New Phytol 182:589–607

    Article  Google Scholar 

  • Savard M (2000) Modelling risk, trade, agricultural and environmental policies to assess trade-offs between water quality and welfare in the hog industry. Ecol Model 125:51–66. doi:10.1016/S0304-3800(99)00173-8

    Article  Google Scholar 

  • Shrestha S, Kazama F, Newham LTH (2008) A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ Model Softw 23:182–194. doi:10.1016/j.envsoft.2007.05.006

    Article  Google Scholar 

  • Stephenson K, Shabman L (2011) Rhetoric and reality of water quality trading and the potential for market-like reform. JAWRA J of the Am Water Resour Assoc 47:15–28. doi:10.1111/j.1752-1688.2010.00492.x

    Article  Google Scholar 

  • Stockmann U et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. doi:10.1016/j.agee.2012.10.001

    Article  Google Scholar 

  • Thomas GW (ed) (1996) Soil pH and soil acidity. vol 5. Methods of soil analysis: Part 3—chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, WI

    Google Scholar 

  • Topp GC, Ferre PA (2002) Water content vol 5. SSSA, Agronomy Monograph, Madison, WI. doi:10.2136/sssabookser5.4.c36

  • Tyler AN, Svab E, Preston T, Présing M, Kovács WA (2006) Remote sensing of the water quality of shallow lakes: a mixture modelling approach to quantifying phytoplankton in water characterized by high‐suspended sediment. Int J Remote Sens 27:1521–1537

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2004) Water quality trading assessment handbook: can water quality trading advance your Watershed's goals? Office of Water. EPA, Washington DC

    Google Scholar 

  • United Nations DoEaSA, Population Division (2013) World Population Prospects: The 2012 Revision. "World Population to reach 9.6 billion by 2050 with most growth in developing regions, especially Africa". http://esa.un.org/unpd/wpp/index.htm.

  • United Nations Educational Scientific and Cultural Organization U (2006) Global Hydrology and water resources. Water: A Shared Responsibility. http://www.unwater.org/downloads/wwdr2_ch_11.pdf.

  • United States Environmental Protection Agency (2003) Final Water Quality Trading Policy. United States Environmental Protection Agency. Office of Water. Water Quality Trading Policy. http://water.epa.gov/type/watersheds/trading/finalpolicy2003.cfm. Accessed November, 26 2013

  • Uriarte M, Yackulic CB, Lim Y, Arce-Nazario JA (2011) Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landsc Ecol 26:1151–1164. doi:10.1007/s10980-011-9642-y

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Wang W-c, Xu D-m, Chau K-w, Lei G-j (2014) Assessment of river water quality based on theory of variable fuzzy sets and fuzzy binary comparison method. Water Resour Manag 28:4183–4200. doi:10.1007/s11269-014-0738-4

    Article  Google Scholar 

  • Ward RC (1996) Water quality monitoring: Where's the beef? JAWRA J of the Am Water Resour Assoc 32:673–680. doi:10.1111/j.1752-1688.1996.tb03465.x

    Article  Google Scholar 

  • Webster R (2007) Analysis of variance, inference, multiple comparisons and sampling effects in soil research. Eur J Soil Sci 58:74–82

    Article  Google Scholar 

  • WHO (2013) Water Sanitation and Health

  • Yang XY, Ren WD, Sun BH, Zhang SL (2012) Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177:49–56. doi:10.1016/j.geoderma.2012.01.033

    Article  Google Scholar 

  • Zhang S, Zhao TB, Wang J, Qu XL, Chen W, Han Y (2013) Determination of fluorine chlorine and bromine in household products by means of oxygen bomb combustion and Ion chromatography. J Chromatogr Sci 51:65–69. doi:10.1093/chromsci/bms108

    Article  Google Scholar 

  • Zhuiykov S (2012) Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks. Sensors Actuators B Chem 161:1–20

    Article  Google Scholar 

  • Zia H, Harris NR, Merrett GV, Rivers M, Coles N (2013) The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks. Comput Electron Agric 96:126–138. doi:10.1016/j.compag.2013.05.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent de Paul Obade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paul Obade, V., Lal, R. & Moore, R. Assessing the Accuracy of Soil and Water Quality Characterization Using Remote Sensing. Water Resour Manage 28, 5091–5109 (2014). https://doi.org/10.1007/s11269-014-0796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0796-7

Keywords

Navigation