Skip to main content

Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage

Abstract

The study was conducted between January and December 2002. The main objective of this study was evaluation of effects of refrigerated storage duration on redistribution of three trace elements (Cd, Cu and Zn) in tissues (exoskeleton, abdominal muscle and hepatopancreas) of a shrimp species (Penaeus semisulcatus). Moreover, the possible roles of metallothionein (a kind of metalloprotein) in redistribution of the elements in tissues of the selected species were assessed. The specimens were sampled from northwestern part of the Persian Gulf. The concentrations of metals in the tissues were measured using Inductively Coupled Plasma-Optical Emission Spectrophotometer (ICP-OES). Metallothionein levels were determined by Differential Pulse Polarography (DPP) method. pH of the muscle samples was also measured in different stages. Different statistical methods were used for interpretation of the results. There were no size-dependent differences in metal contents of the species. The results were compared with specimens from other areas of the world and existing guidelines and limits. Concentrations of the metals in the muscle (0.103, 3.418 and 8.977 µg g−1 wet weight in the case of Cd, Cu and Zn, respectively) samples were below the most guidelines for human consumption. The results were in general agreement with those obtained by some other researchers. There were highly significant differences between sexes in Zn and Cu contents. Levels of Zn in females were significantly higher than males. The reverse case observed for Cu. The highest mean Cu and Zn concentrations (15.939 and 43.394 µg g−1 wet weight, respectively) were found in hepatopancreas samples, but the highest level of Cd (0.790 µg g−1 wet weight) was observed in exoskeleton. There were significant differences between the fresh and refrigerated samples from accumulation of Cd and Zn in tissues point of view, which can be attributed to the metal binding properties of metallothioneins as well as their degradation during the storage.

This is a preview of subscription content, access via your institution.

References

  • M. B. Anderson J. E. Preslan L. Jolibois J. E. Bollinger W. G. George (1997) ArticleTitleBioaccumulation of lead nitrate in red swamp cryfish (Procambarus clarkii) J. Hazard. Mater. 54 IssueID1–2 15–29 Occurrence Handle1:CAS:528:DyaK2sXjtlWmsbo%3D

    CAS  Google Scholar 

  • Anon: 1986, ‘Assessment of the Present State of Pollution by Cadmium, Copper, Zinc and Lead in the Mediterranean Sea’, UNEP/WG.144/11 submitted to the Fourth Meeting of the Working Group for Scientific and Technical Cooperation for MED POL, 41 pp.

  • Anon: 1993, ‘Monitoring and surveillance of non-radioactive contaminats in the aquatic environment and activities regulating the disposal of wastes at the sea’, Aquatic Environment Monitoring Report No. 36, Ministry of Agriculture, Fisheries and Food, LOWESTOFT, 78 pp.

  • T. I. Balkas S. Tuğrul I. Salihoğlu (1982) ArticleTitleTrace metal levels in fish and crustaceans from northeastern Mediterranean coastal waters Mar. Environ. Res. 6 IssueID4 281–289 Occurrence Handle1:CAS:528:DyaL38Xks1SltL4%3D

    CAS  Google Scholar 

  • M. H. G. Berntssen K. Hylland S. E. Wendelaar Bonga M. Maage (1999) ArticleTitleToxic levels of dietary copper in Atlantic salmon (Salmo salar L.) parr. Aquat. Toxicol. 46 87–99 Occurrence Handle1:CAS:528:DyaK1MXjtFWnt7c%3D

    CAS  Google Scholar 

  • C. A. Biney E. Ameyibor (1992) ArticleTitleTrace metal concentrations in the pink shrimp Penaeus notialis, from the coast of Ghana Water Air Soil Pollut. 63 273–279 Occurrence Handle1:CAS:528:DyaK38XksFGntrk%3D

    CAS  Google Scholar 

  • D. E. Bliss (1993) The Biology of Crustacea: Internal Anatomy and Physiological Regulation 5 457

    Google Scholar 

  • M. Brouwer T. Brouwer-Hoexum R. Cashon (1992) ArticleTitleCrustaceans as models for metal metabolism: III. Interaction of lobster and mammalian metallothionein with glutathione Marine Environ. Res. 35 13–17

    Google Scholar 

  • J. Burger C. Lord L. McGrath K. Gaines I. Brisbin M. Gochfeld E. Yurkow (2000) ArticleTitleMetals and metallothionein in the liver of raccoons: Utility for environmental assessment and monitoring J. Toxicol. Environ. Health. 60 243–261 Occurrence Handle1:CAS:528:DC%2BD3cXksVeru70%3D

    CAS  Google Scholar 

  • M. Canli R. M. Stagg G. Rodger (1997) ArticleTitleThe induction of metallothionein in tissues of the Norway Lobster Nephrops norvegicus following exposure to cadmium, copper and zinc: The relationships between metallothionein and the metals Environ. Pollut. 96 IssueID3 343–350 Occurrence Handle1:CAS:528:DyaK2sXlvVWhsro%3D

    CAS  Google Scholar 

  • S. E. Collings M. S. Johnson R. T. Leah (1996) ArticleTitleMetal contamination of angler-caught fish from the Mersey Estuary Marine Environ. Res. 41 IssueID3 281–297 Occurrence Handle1:CAS:528:DyaK28XhslWhtrk%3D

    CAS  Google Scholar 

  • W. Dall J. W. Moriarty (1983) ArticleTitleFunctionl aspects of nutrition and digestion Biol. Crustacea 5 215–261

    Google Scholar 

  • W. W. Daniel (1977) Introductory Statistics with Applications Houghton Mifflin Boston 158

    Google Scholar 

  • D. Darmono G. R. W. Denton (1990) ArticleTitleHeavy metal concentrations in the banana prawn, Penaeus merguiensis, and leader prawn, P. monodon, in the Townsville Region of Australia Bull. Environ. Contam. Toxicol. 44 479–486 Occurrence Handle1:CAS:528:DyaK3cXit1aqsbc%3D

    CAS  Google Scholar 

  • M. A. Dunn T. L. Blalock R. J. Cousins (1987) ArticleTitleMetallothionein Proc. Soc. Exp. Biol. Med. 185 107–119 Occurrence Handle1:CAS:528:DyaL2sXktlGiu7o%3D

    CAS  Google Scholar 

  • D. W. Engel M. Brouwer (1984) ArticleTitleTrace metal-binding proteins in marine molluscs and crustaceans Marine Environ. Res. 13 177–194 Occurrence Handle1:CAS:528:DyaL2MXlvFKitQ%3D%3D

    CAS  Google Scholar 

  • D. W. Engel M. Brouwer (1987) ArticleTitleMetal regulation and molting in the blue crab, Callinectes sapidus: Metallothionein function in metal metabolism Biol. Bull. 173 239–251

    Google Scholar 

  • D. W. Engel M. Brouwer (1991) ArticleTitleShort-term metallothionein and copper changes in blu crabs at ecdysis Biol. Bull. 180 447–452 Occurrence Handle1:CAS:528:DyaK3MXlsl2ksbo%3D

    CAS  Google Scholar 

  • D. W. Engel (1993) ArticleTitleCrustaceans as models for metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothionein Marine Environ. Res. 35 1–5 Occurrence Handle1:CAS:528:DyaK3sXitlSmtL4%3D

    CAS  Google Scholar 

  • K. A. Francesconi E. J. Moore L. M. Joll (1993) ArticleTitleCadmium in saucer scallop, Amusium balloti, from western Australian waters: Concentrations in adductor muscle and redistribution following frozen storage Aust. J. Mar. Freshw. Res. 44 457–479

    Google Scholar 

  • K. A. Francesconi K. L. Pedersen P. Hojrup (1998) ArticleTitleSex specific accumulation of Cd-metallothionein in the abdominal muscle of coral prawn Metapenaeopsis crassissima from a natural population Marine Environ. Res. 46 IssueID1–5 541–544 Occurrence Handle1:CAS:528:DyaK1cXmtVOhs7k%3D

    CAS  Google Scholar 

  • M. Frenet A. Alliot (1985) ArticleTitleComparative bioaccumulation of metals in Palaemonates varians in polluted and non-poliuted environments Marine Environ. Res. 17 19–44 Occurrence Handle1:CAS:528:DyaL28XhtlGlt7w%3D

    CAS  Google Scholar 

  • R. H. Green (1979) Sampling Design and Statistical Methods for Environmental Biologists John Wiley & Sons USA 257

    Google Scholar 

  • H. Guhathakurta A. Kaviraj (2000) ArticleTitleHeavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, India Marine Pollut. Bull. 40 IssueID11 914–920 Occurrence Handle1:CAS:528:DC%2BD3cXovFChsrg%3D

    CAS  Google Scholar 

  • D. Hamer (1986) ArticleTitleMetallothionein Ann. Rev. Biochem. 55 913–951 Occurrence Handle1:CAS:528:DyaL28XlsVyhsbc%3D

    CAS  Google Scholar 

  • A. Hamza-Chaffai J. Pellerin J. C. Amiard (2003) ArticleTitleHealth assessment of a marine bivalve Ruditapes decussates from the Gulf of Gabes (Tunisia) Environ. Inter. 28 609–612 Occurrence Handle1:CAS:528:DC%2BD38Xps12ltrs%3D

    CAS  Google Scholar 

  • C. Hogstrand G. Lithner C. Haux (1989) ArticleTitleRelationship between metallothionein, copper and zinc in perch (Perca fluviatilis) environmentally exposed to heavy metals Marine Environ. Res. 28 179–182 Occurrence Handle1:CAS:528:DyaK3cXit1aqtb4%3D

    CAS  Google Scholar 

  • C. Hogstrand C. Haux (1990) ArticleTitleMetallothionein as an indicator of heavy metal exposure in two subtropical fish species J. Exp. Marine Biol. Ecol. 138 69–84 Occurrence Handle1:CAS:528:DyaK3cXlvVKhsLY%3D

    CAS  Google Scholar 

  • A. Ismail N. R. Jusoh I. A. Ghani (1995) ArticleTitleTrace metal concentrations in marine prawns off Malaysian coast Marine Pollut. Bull. 31 IssueID1–3 108–110 Occurrence Handle1:CAS:528:DyaK2MXnvFCntrw%3D

    CAS  Google Scholar 

  • W. H. Jeckel R. R. Roth L. Ricci (1996) ArticleTitlePatterns of trace metal distribution in tissues of Pleoticus muelleri (Crustacea: Decapoda: Solenoceridae) Marine Biol. 125 IssueID2 297–306 Occurrence Handle1:CAS:528:DyaK28XjsFWqsrY%3D

    CAS  Google Scholar 

  • K. O. Joseph J. P. Srivastava (1992) ArticleTitleHeavy metal load in prawn, Penaeus indicus (H. Milne Edwards) inhabiting Ennor Estuary in Madras J. Inland Fish. Soc. India 24 IssueID1 30–33

    Google Scholar 

  • J. H. R. Kägi Y. Kojima (1987) ArticleTitleChemistry and biochemistry of metallothionein Experientia Suppl. 52 25–61

    Google Scholar 

  • J. H. R. Kägi A. Schäffer (1988) ArticleTitleBiochemistry and metallothionein Biochemistry 27 IssueID23 8509–8515 Occurrence Handle3064814

    PubMed  Google Scholar 

  • S. Keenan S. Alikhan (1991) ArticleTitleComparative study of cadmium and lead accumulations in Cambarus bartoni (Fab.) (Decapoda, Crustacea) from an acidic and neutral lake Bull. Environ. Contam. Toxicol. 47 91–96 Occurrence Handle1:CAS:528:DyaK3MXktlGgsrs%3D

    CAS  Google Scholar 

  • T.W. Kureishy (1993) ArticleTitleConcentration of heavy metals in marine organisms around Qatar before and after the Gulf war oil spill Marine Pollut. Bull. 27 183–186 Occurrence Handle1:CAS:528:DyaK2cXlsVSqu7Y%3D

    CAS  Google Scholar 

  • A. Lewis (1992) The Biological Importance of Copper: A Literature Review International Copper Association, Ltd. New York 400

    Google Scholar 

  • I. M. Madany A. A. Wahab Z. Al-Alawi (1996) ArticleTitleTrace metals concentrations in marine organisms from the coastal areas of Bahrain, Arabian Gulf Water, Air Soil Pollut. 91 233–248 Occurrence Handle1:CAS:528:DyaK28Xls1ahtL8%3D

    CAS  Google Scholar 

  • W. A. Maher (1986) ArticleTitleTrace metal concentrations in marine organisms from St. Vincent Gulf, south Australia Water, Air Soil Pollut. 29 77–84 Occurrence Handle1:CAS:528:DyaL28XktlOjt7Y%3D

    CAS  Google Scholar 

  • L. Méndez B. Acosta E. Palacois F. Magallón (1997) ArticleTitleEffect of stocking densities on trace metal concentration in three tissues of brown shrimp Penaeus californiensis Aquaculture 156 21–34

    Google Scholar 

  • E. Merian (1991) Metals and their Compounds in the Environment Occurrence, Analysis and Biological Relevance VCH Weinheim 704

    Google Scholar 

  • P. Moksnes U. Lindahl C. Haux (1995) ArticleTitleMetallothionein as a bioindicator of heavy metal exposure in tropical shrimp, Penaeus vannamei: A study of dose-dependent induction Marine Environ. Res. 39 143–146 Occurrence Handle1:CAS:528:DyaK2MXkvFehtr8%3D

    CAS  Google Scholar 

  • Moore, J. W. and Ramamoorthy, S.: 1984, Heavy Metals in Natural Waters, Springer-Verlag, pp. 268.

  • S. Mormede I. M. Davies (2001) ArticleTitleHeavy metal concentrations in commercial deep-sea fish from Rockall trough Continental Shelf Res. 21 899–916

    Google Scholar 

  • Nauen, C. E.: 1983, ‘Compilation of legal limits for hazardous substances in fish and fishery products’, FAO Fisheries Circular No. 764, Rome, Italy, pp. 102.

  • R. W. Olafson R. G. Sim (1979) ArticleTitleAn electrochemical approach to quantification and characterization of metallothionein Anal. Biochem. 100 343–351 Occurrence Handle1:CAS:528:DyaL3cXptVansA%3D%3D

    CAS  Google Scholar 

  • R. W. Olafson (1981) ArticleTitleDifferential pulse polarographic determination of murine metallothionein induction kinetics J. Biol. Chem. 256 1263–1268 Occurrence Handle1:CAS:528:DyaL3MXotFSksQ%3D%3D

    CAS  Google Scholar 

  • R. W. Olafson P. E. Olsson (1991) ArticleTitleElectrochemical detection of metallothionein Meth. Enzymol. 205 205–215 Occurrence Handle10.1016/0076-6879(91)05100-A Occurrence Handle1:CAS:528:DyaK38XitFSmtLc%3D

    Article  CAS  Google Scholar 

  • J. D. Otvos R. W. Olafson M. Armitage (1982) ArticleTitleStructure of an invertebrate metallothionein from Scylla serrata J. Biol. Chem. 257 IssueID5 2427–2431 Occurrence Handle1:CAS:528:DyaL38XhsFOksr0%3D

    CAS  Google Scholar 

  • J. D. Otvos D. H. Petering C. F. Shaw (1989) ArticleTitleStructure-reactivity relationships of metallothionein, a unique metal-binding protein Comments Inorg. Chem 9 1–35 Occurrence Handle1:CAS:528:DyaL1MXltFWjtLk%3D

    CAS  Google Scholar 

  • J. Overnell (1982) ArticleTitleA method for the isolation of metallothionein from the hepatopancreas of the Crab Cancer pagurus that minimizes the effect of the tissue proteases Compar. Biochem. Physiol. 73B IssueID3 547–553 Occurrence Handle1:CAS:528:DyaL3sXktF2js7Y%3D

    CAS  Google Scholar 

  • F. Paez-Osuna R. Perez-Gonzalez G. Izaguirre-Fierro H. M. Zaazueta-Padilla L. M. Flores-Campana (1995) ArticleTitleTrace metal concentrations and their distribution in the lobster Panulirus inflatus (Bouvier, 1895) from the Mexican pacific coast Environ. Pollut. 90 163–70 Occurrence Handle1:CAS:528:DyaK2MXnslChu7s%3D

    CAS  Google Scholar 

  • F. Paez-Osuna C. Ruiz-Fernandez (1995) ArticleTitleTrace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments Environ. Pollut. 87 243–247 Occurrence Handle1:CAS:528:DyaK2MXisFKntL4%3D

    CAS  Google Scholar 

  • F. Paez-Osuna L. Tron-Mayen (1995) ArticleTitleDistribution of heavy metals in tissues of shrimp Penaeus californiensis from the northwest coast of Mexico Environ. Contam. Toxicol. 55 209–215 Occurrence Handle1:CAS:528:DyaK2MXmtl2ntLY%3D

    CAS  Google Scholar 

  • A. Pastor F. Hernández M. A. Peris J. Beltrán J. V. Sancho M. T. Castillo (1994) ArticleTitleLevels of heavy metals in some marine organisms from the western Mediterranean Area (Spain) Marine Pollut. Bull. 28 IssueID1 50–53 Occurrence Handle1:CAS:528:DyaK2cXhvF2qs78%3D

    CAS  Google Scholar 

  • N. Pourang G. Amini (2001) ArticleTitleDistribution of trace elements in tissues of two shrimp species from Persian Gulf and effects of storage temperature on elements transportation Water, Air Soil Pollut. 129 229–243 Occurrence Handle1:CAS:528:DC%2BD3MXlsVGjtbo%3D

    CAS  Google Scholar 

  • N. Pourang J. H. Dennis H. Ghourchian (2004) ArticleTitleTissue distribution and redistribution of trace elements in shrimp species with emphasis on the roles of metallothionein: A short review J. Ecotoxicol. 13 IssueID6 519–533 Occurrence Handle1:CAS:528:DC%2BD2cXmtlOlsbs%3D

    CAS  Google Scholar 

  • M. Radojević V. N. Bashkin (1999) Practical Environmental Analysis The Royal Society of Chemistry UK 466

    Google Scholar 

  • D. G. Rees (1991) Essential Statistics Chapman and Hall London 258

    Google Scholar 

  • G. Roesijadi (1992) ArticleTitleMetallothioneins in metal regulation and toxicity in aquatic animals Aquat. Toxic. 22 81–114 Occurrence Handle1:CAS:528:DyaK38XisV2qt7o%3D

    CAS  Google Scholar 

  • G. Roesijadi (1996) ArticleTitleMetallothionein and its role in toxic metal regulation Compar. Biochem. Physiol. 113C IssueID2 117–123 Occurrence Handle1:CAS:528:DyaK28XivVyqsrc%3D

    CAS  Google Scholar 

  • M. Sadiq T. H. Zaidi A. Hoda A. A. Mian (1982) ArticleTitleHeavy metal concentrations in shrimp, crab and sediment obtained from AD - Dammam sewage outfall area Bull. Environm. Contam. Toxicol. 29 313–319 Occurrence Handle1:CAS:528:DyaL38Xltl2rtbw%3D

    CAS  Google Scholar 

  • G. Santovito P. Irato E. Piccinni V. Albergoni (2000) ArticleTitleRelationship between metallothionein and metal contents in red-blooded and white-blooded Antarctic teleosts Polar Biol. 23 383–391

    Google Scholar 

  • D. Schlenk A. H. Ringwood T. Brouwer-Hoexum M. Brouwer (1993) ArticleTitleCrustaceans as models for metal metabolism: II. Induction and characterization of metallothionein isoforms from the blue crab (Callinectes sapidus) Marine Environ. res. 35 7–11 Occurrence Handle1:CAS:528:DyaK3sXitlSltr0%3D

    CAS  Google Scholar 

  • M.A. Shearer G. L. Fletcher (1984) ArticleTitleThe relationship between metallothionein and intestinal zinc absorption in the winter flounder Can. J. Zool. 62 2211–2230 Occurrence Handle10.1139/z84-322

    Article  Google Scholar 

  • K. Simkiss M. G. Taylor (1995) Transport of Metals Across Membranes. Metal Speciation and Bioavailability in Aquatic systems John Wiley and Sons Ltd Chichester 1–44

    Google Scholar 

  • R. R. Sokal F. J. Rohlf (1981) Biometry 2nd Freeman and Co. San Francisco, California 859

    Google Scholar 

  • Steel, R. G. D., Torrie, J. H. and Dickey, D. A.: 1997, ‘Principles and Procedures of Statistics. A Biometrical Approach, 3rd ed., McGraw-Hill, Publisher, pp. 672.

  • V. E. Steenkamp H. H. Preeze Particledu H. J. Schoonbee P. H. Eden Particlevan (1994) ArticleTitleBioaccumulation of manganese in selected tissues of the freshwater crab, Potamonautes warreni (Calman), from industrial and mine-polluted freshwater ecosystems Hydrobiologia 288 137–150 Occurrence Handle1:CAS:528:DyaK2MXhvVKgsrw%3D

    CAS  Google Scholar 

  • A. Viarengo E. Ponzano F. Dondero R. Fabbri (1997) ArticleTitleA Simple spectrophotometric method for metallothionein evaluation in marine organisms: An application to Mediterranean and Antarctic Molluscs Marine Environ. res. 44 IssueID1 69–84 Occurrence Handle1:CAS:528:DyaK2sXisVKqtrY%3D

    CAS  Google Scholar 

  • S.L. White P. S. Rainbow (1986) ArticleTitleA Preliminary Study of Cu-, Cd- and Zn- binding components in the Hepatopancreas of Palaeman elegans (Crustacea: Decapoda) Compar. Biochem. Physiol. 83C IssueID1 111–116 Occurrence Handle1:CAS:528:DyaL28XhtVClurc%3D

    CAS  Google Scholar 

  • J.H. Zar (1999) Biostatistical Analysis EditionNumber4th ed. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 718

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pourang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pourang, N., Dennis, J.H. & Ghourchian, H. Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environ Monit Assess 100, 71–88 (2005). https://doi.org/10.1007/s10661-005-7061-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-7061-8

Keywords

  • metallothionein
  • Persian Gulf
  • redistribution
  • shrimp
  • storage
  • trace elements