Skip to main content

Exploring the disseminating behaviors of eWOM marketing: persuasion in online video

Abstract

The effectiveness of electronic word-of-mouth (eWOM) communication has attracted increasing attention from marketing practitioners, but relatively few studies focus on the dissemination of eWOM communication from a message perspective. Online video is a prominent form of marketing promotion, yet again, little is known about which factors make online video engaging or how they influence recipients’ forwarding intentions. This study adopts Lasswell’s communication model to investigate the persuasiveness of online video and uses the source, content, and channel dimensions to examine three potentially influential factors: awareness of persuasive intent, perceived humor, and multimedia effect. Awareness of persuasive intent exerts a negative influence, whereas the humor and multimedia effects have positive influences on both attitude toward a received online video and forwarding intentions. Therefore, e-marketers should reshape video clips to be humorous, use multimedia effects, and disguise their commercial intent to attract recipients’ attention and persuade them to disseminate an online video.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. The experimental stimuli can be accessed through the following link: https://sites.google.com/site/reserachplatofrm/.

References

  1. Golan, G. J., & Zaidner, L. (2008). Creative strategies in viral advertising: An application of Taylor’s six-segment message strategy wheel. Journal of Computer-Mediated Communication, 13(4), 959–972.

    Article  Google Scholar 

  2. Hennig-Thurau, T., & Walsh, G. (2004). Electronic word-of-mouth: Motives for and consequences of reading customer articulations on the Internet. International Journal of Electronic Commerce, 8(2), 51–74.

    Google Scholar 

  3. Hinz, O., Skiera, B., Barrot, C., & Becker, J. U. (2011). Seeding strategies for viral marketing: An empirical comparison. Journal of Marketing, 75(6), 55–71.

    Article  Google Scholar 

  4. Phelps, J. E., Lewis, R., Mobilio, L., Perry, D., & Raman, N. (2004). Viral marketing or electronic word-of-mouth advertising: Examining consumer responses and motivations to pass along email. Journal of Advertising Research, 44(4), 333–348.

    Google Scholar 

  5. Ho, J. Y. C., & Dempsey, M. (2010). Viral marketing: Motivations to forward online content. Journal of Business Research, 63(9/10), 1000–1006.

    Article  Google Scholar 

  6. Lian, S. (2011). Innovative Internet video consuming based on media analysis techniques. Electronic Commerce Research, 11(1), 75–89.

    Article  Google Scholar 

  7. Gill, J. (2006). Contagious commercials: How to get in on the Youtube craze. Inc., 28(11), 31–32.

    Google Scholar 

  8. Online-Publishers-Association (2007). Frame of reference: Online video advertising, content and consumer behavior. http://www.online-publishers.org/media/file/OPAFramesofReferenceFINA1024.pdf. Accessed 30 June 2011.

  9. Chiu, H.-C., Hsieh, Y.-C., Kao, Y.-H., & Lee, M. (2007). The determinants of email receivers’ disseminating behaviors on the Internet. Journal of Advertising Research, 47(4), 524–534.

    Article  Google Scholar 

  10. Huang, C.-C., Lin, T.-C., & Lin, K.-J. (2009). Factors affecting pass-along email intentions (PAEIs): Integrating the social capital and social cognition theories. Electronic Commerce Research and Applications, 8(3), 160–169.

    Article  Google Scholar 

  11. van der Lans, R., van Bruggen, G., Eliashberg, J., & Wierenga, B. (2010). A viral branching model for predicting the spread of electronic word of mouth. Marketing Science, 29(2), 348–365.

    Article  Google Scholar 

  12. Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion: Psychological studies of opinion change. New Haven: Yale University Press.

    Google Scholar 

  13. Dobele, A., Lindgreen, A., Beverland, M., Vanhamme, J., & van Wijk, R. (2007). Why pass on viral messages? Because they connect emotionally. Business Horizons, 50(4), 291–304.

    Article  Google Scholar 

  14. Ajzen, I. (1992). Persuasive communication theory in social psychology: A historical perspective. In M. J. Manfredo (Ed.), Influencing human behavior: Theory and applications in recreation, tourism, and natural resources management (pp. 1–27). Champaign: Sagamore.

    Google Scholar 

  15. Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Orlando: Hartcourt Brace.

    Google Scholar 

  16. Lasswell, H. D. (1948). The structure and function of communication in society. In L. Bryson (Ed.), Communication of ideas (pp. 37–51). New York: Harper and Row.

    Google Scholar 

  17. Marsen, S. (2006). Methods and models of communication studies. In S. Marsen (Ed.), Communication studies. New York: Palgrave Macmillan.

    Google Scholar 

  18. Duncan, T., & Moriarty, S. E. (1998). A communication-based marketing model for managing relationships. Journal of Marketing, 62(2), 1–13.

    Article  Google Scholar 

  19. Bruner, J. S. (1957). On going beyond the information given. In H. E. Gruber, K. R. Hammond, & R. Jessor (Eds.), Contemporary approaches to cognition (pp. 41–69). Cambridge: Harvard University Press.

    Google Scholar 

  20. Asch, S. E. (1946). Forming impressions of personality. Journal of Abnormal and Social Psychology, 41, 258–290.

    Article  Google Scholar 

  21. Morreale, S. P., Spitzberg, B. H., & Barge, J. K. (2001). Human communication: Motivation, knowledge and skills. Belmont: Wadsworth/Thomson Learning.

    Google Scholar 

  22. Purcell, K. (2010). The State of Online Video. http://www.pewinternet.org/Press-Releases/2010/State-of-Online-Video.aspx. Accessed 30 June 2011.

  23. Madden, M. (2007). Online video proliferates as viewers share what they find online; 57 % of online adults watch or download video. http://www.pewinternet.org/Press-Releases/2007/Online-video-proliferates-as-viewers-share-what-they-find-online-57-of-online-adults-watc.aspx. Accessed 30 June 2011.

  24. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45(3), 255–287.

    Article  Google Scholar 

  25. Jiang, Z., & Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers’ product understanding. Management Information Systems Quarterly, 31(3), 475–500.

    Google Scholar 

  26. Dobele, A., Tolemanb, D., & Beverland, M. (2005). Controlled infection! Spreading the brand message through viral marketing. Business Horizons, 48, 143–149.

    Article  Google Scholar 

  27. Cowley, E., & Barron, C. (2008). When product placement goes wrong: The effects of program liking and placement prominence. Journal of Advertising, 37(1), 89–98.

    Article  Google Scholar 

  28. Gupta, P. B., & Lord, K. L. (1998). Product placement in movies: The effect of prominence and mode on audience recall. Journal of Current Issues and Research in Advertising, 20(1), 47–59.

    Google Scholar 

  29. Van Reijmersdal, E. (2009). Brand placement prominence: Good for memory! Bad for attitudes? Journal of Advertising Research, 49(2), 151–153.

    Article  Google Scholar 

  30. Friestad, M., & Wright, P. (1994). The persuasion knowledge model: How people cope with persuasion attempts. Journal of Consumer Research, 21(1), 1–31.

    Article  Google Scholar 

  31. Wei, C.-P., Chen, H.-C., & Cheng, T.-H. (2008). Effective spam filtering: A single-class learning and ensemble approach. Decision Support Systems, 45(3), 491–503.

    Article  Google Scholar 

  32. Beard, F. K. (2005). One hundred years of humor in American advertising. Journal of Macromarketing, 25(1), 54–65.

    Article  Google Scholar 

  33. Cline, T. W., Altsech, M. B., & Kellaris, J. J. (2003). When does humor enhance or inhibit Ad responses? The moderating role of the need for humor. Journal of Advertising, 32(3), 31–45.

    Google Scholar 

  34. Shabbir, H., & Thwaites, D. (2007). The use of humor to mask deceptive advertising: It’s no laughing matter. Journal of Advertising, 36(2), 75–85.

    Article  Google Scholar 

  35. Eisend, M. (2009). A meta-analysis of humor in advertising. Journal of the Academy of Marketing Science, 37(2), 191–203.

    Article  Google Scholar 

  36. Rimé, B., Corsini, S., & Herbette, G. (2002). Emotion, verbal expression, and the social sharing of emotion. In S. R. Fussell (Ed.), The verbal communication of emotions: Interdisciplinary perspectives (pp. 185–208). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  37. Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32(5), 554–571.

    Article  Google Scholar 

  38. Severin, W. (1967). Another look at cue summation. Audio Visual Communication Review, 15(4), 233–245.

    Google Scholar 

  39. Rieber, L. P., Tzeng, S.-C., & Tribble, K. (2004). Discovery learning, representation, and explanation within a computer-based simulation: finding the right mix. Learning and Instruction, 14(3), 307–323.

    Article  Google Scholar 

  40. Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13, 125–139.

    Article  Google Scholar 

  41. Nathan, R. J., & Yeow, P. H. P. (2011). Crucial web usability factors of 36 industries for students: a large-scale empirical study. Electronic Commerce Research, 11(2), 151–180.

    Article  Google Scholar 

  42. Cook, D. L., & Coupey, E. (1998). Consumer behavior and unresolved regulatory issues in electronic marketing. Journal of Business Research, 41(3), 231–238.

    Article  Google Scholar 

  43. Appia, O. (2006). Rich media, poor media: The impact of audio/video vs. text/picture testimonial Ads on browsers’ evaluations of commercial web sites and online products. Journal of Current Issues and Research in Advertising, 28(1), 73–86.

    Google Scholar 

  44. Otondo, R. F., Scotter, J. R. V., Allen, D. G., & Palvia, P. (2008). The complexity of richness: Media, message, and communication outcomes. Information & Management, 45(1), 21–30.

    Article  Google Scholar 

  45. Lutz, R. J. (1985). Antecedents of attitude toward the ad: A conceptual framework. In L. F. Alwitt & A. A. Mitchell (Eds.), Psychological processes and advertising effects: Theory, research, and application (pp. 45–63). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  46. Reardon, J., & Miller, C. (2008). Smoking prevention messages for adolescents: how intensity, valence, and recipient of consequences affect attitude toward the ad and intent to smoke. Journal of Marketing Theory and Practice, 16(1), 67–77.

    Article  Google Scholar 

  47. Zikmund, W. G. (2007). Business research methods (7th ed.). Mason: South-Western College.

    Google Scholar 

  48. Gulas, C. S., & Weinberger, M. G. (2006). Humor in advertising: A comprehensive analysis. New York: Sharpe.

    Google Scholar 

  49. Weinberger, M. G., Spotts, H., Campbell, L., & Parsons, A. L. (1995). The use and effect of humor in different advertising media. Journal of Advertising Research, 35(3), 44–56.

    Google Scholar 

  50. Arias-Bolzmann, L., Chakraborty, G., & Mowen, J. C. (2000). Effects of absurdity in advertising: The moderating role of product category attitude and the mediating role of cognitive responses. Journal of Advertising, 29(1), 35–49.

    Google Scholar 

  51. Coyle, J. R., & Thorson, E. (2001). The effects of progressive levels of interactivity and vividness in web marketing sites. Journal of Advertising, 30(3), 65–77.

    Google Scholar 

  52. Hong, W., Thong, J. Y. L., & Tam, K. Y. (2004). The effects of information format and shopping task on consumers’ online shopping behavior: A cognitive fit perspective. Journal of Management Information Systems, 21(3), 149–184.

    Google Scholar 

  53. Szymanski, D. M., & Hise, R. T. (2000). E-satisfaction: an initial examination. Journal of Retailing, 76(3), 309–322.

    Article  Google Scholar 

  54. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). New Jersey: Prentice Hall.

    Google Scholar 

  55. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology. Monograph Supplement, 51(6), 1173–1182.

    Article  Google Scholar 

  56. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  57. Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544.

    Article  Google Scholar 

  58. Analtech (2010). Adventures of Ana L’Tech. http://www.analtech.com/adventuresofana_hi_res.html. Accessed 30 June 2011.

  59. Netcosm (2007). Network Monitoring Software—NetQoS Netcosm. http://tw.youtube.com/watch?v=dtC6ZM0_m8U. Accessed 30 June 2011.

  60. Weinberger, M. G., & Spotts, H. E. (1989). A situational view of information content in TV advertising in the US and UK. Journal of Marketing, 53(1), 89–94.

    Article  Google Scholar 

  61. Goldsmith, R. E., Lafferty, B. A., & Newell, S. J. (2000). The impact of corporate credibility and celebrity credibility on consumer reaction to advertisements and brands. Journal of Advertising, 29(3), 43–54.

    Google Scholar 

  62. Ulbrich, F., Christensen, T., & Stankus, L. (2011). Gender-specific on-line shopping preferences. Electronic Commerce Research, 11(2), 1–19.

    Article  Google Scholar 

  63. Feiereisen, S., Broderick, A. J., & Douglas, S. P. (2009). The effect and moderation of gender identity congruity: Utilizing “real women” advertising images. Psychology & Marketing, 26(9), 813–843.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kuei Hsieh.

Appendix: Scale measures

Appendix: Scale measures

Construct Measure Item Means Construct Means Cronbach’s alpha References
Perceived humor This video is happy 4.51 3.96 0.944 [33]
This video is interesting 4.00
This video is funny 3.74
This video is humorous 3.73
This is amusing 3.81
Multimedia effect This video is rich in sound effects 3.44 3.63 0.911 [40, 43, 51]
This video is rich in visual effects 3.96
This video is rich in multimedia effect 3.57
I video the media used in this video can present sufficient effects 3.54
Awareness of persuasive intent This video is trying to sell a specific product or a specific brand to me 4.18 4.25 0.945 [27, 30]
This video is a commercial that is marketing a specific product 4.21
This video was made based on commercial intent 4.38
Attitude toward received online video This video is appealing 3.86 3.86 0.941 [46]
This video expresses its ideas clearly 3.92
This video is easy to be understood 3.94
This video is refreshing 3.80
This video is pleasant 3.77
Intention to forward I think this video is worth sharing with others 3.92 3.76 0.921 [9]
I will recommend this video to others 3.85
I will share this video to my friends through Internet 3.52

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsieh, JK., Hsieh, YC. & Tang, YC. Exploring the disseminating behaviors of eWOM marketing: persuasion in online video. Electron Commer Res 12, 201–224 (2012). https://doi.org/10.1007/s10660-012-9091-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-012-9091-y

Keywords

  • Online video
  • Viral marketing
  • eWOM
  • Humor
  • Multimedia effect
  • Persuasive intent