Skip to main content
Log in

A Generalized Ogden-Type Elastically Isotropic Hyperelastic Model Including Elastic-Viscoplastic Response

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The objective of this paper is to generalize an Ogden-type model for elastically isotropic response to include elastic-viscoplastic response. The proposed model uses a strain energy function that depends on the total dilatation and the maximum and minimum elastic distortional stretches. A novel feature of the model is that these elastic distortional stretches are expressed in terms of two independent invariants of an elastic distortional deformation tensor that is determined by an evolution equation. The Cauchy stress is determined by derivatives of the strain energy function, the dilatation and the elastic distortional deformation tensor without the need for determining its principal directions. Examples demonstrate the response of the model for hyperelastic response but the proposed formulation can also model a smooth elastic-plastic transition with rate-independent or rate-dependent response with hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blaise, B.B., Betchewe, G., Beda, T.: Optimization of the model of Ogden energy by the genetic algorithm method. Appl. Rheol. 29(1), 21–29 (2019)

    Article  Google Scholar 

  2. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  3. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  4. Fung, Y.: Biomechanics-Mechanical Properties of Living Tissues, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  5. Hollenstein, M., Jabareen, M., Rubin, M.B.: Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Comput. Mech. 52, 649–667 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hollenstein, M., Jabareen, M., Rubin, M.B.: Erratum to: Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Comput. Mech. 55, 453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leonov, A.I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15, 85–98 (1976)

    Article  MATH  Google Scholar 

  8. Ogden, R.W.: Non-linear Elastic Deformations. Courier Corporation, ??? (1997)

    Google Scholar 

  9. Rubin, M.B.: Continuum Mechanics with Eulerian Formulations of Constitutive Equations. Springer, ??? (2021)

    Book  MATH  Google Scholar 

  10. Rubin, M.B., Attia, A.V.: Calculation of hyperelastic response of finitely deformed elastic-viscoplastic materials. Int. J. Numer. Methods Eng. 39, 309–320 (1996)

    Article  MATH  Google Scholar 

  11. Rubin, M.B., Ehret, A.E.: An invariant-based Ogden-type model for incompressible isotropic hyperelastic materials. J. Elast. 125(1), 63–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript

Corresponding author

Correspondence to M. B. Rubin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Bounds

Consider the function

$$ \begin{aligned} & f(x_{1},x_{3}) = x_{1} + \frac{1}{x_{1} x_{3}} + x_{3} \quad \text{for} \quad x_{1} \ge 1 \,,\quad 0 < x_{3} \le 1 \,, \end{aligned} $$
(40)

for which

$$\begin{aligned} &\frac{{\partial }f}{{\partial }x_{1}} = 1 - \frac{1}{x_{1}^{2}x_{3}} \,, \quad \frac{{\partial }f}{{\partial }x_{3}} = 1 - \frac{1}{x_{1}x_{3}^{2}} \,, \\ &\frac{{\partial }^{2} f}{{\partial }x_{1}^{2}} = \frac{2}{x_{1}^{3} x_{3}} > 0 \,, \quad \frac{{\partial }^{2} f}{{\partial }x_{3}^{2}} = \frac{2}{x_{1} x_{3}^{3}} > 0 \,, \\ &\frac{{\partial }^{2} f}{{\partial }x_{1} {\partial }x_{3}} = \frac{{\partial }^{2} f}{{\partial }x_{3} {\partial }x_{1}} = \frac{1}{x_{1}^{2} x_{3}^{2}} > 0 \,. \end{aligned}$$
(41)

These results can be used to determine that \(x_{1}=x_{3}=1\) yields the minimum value of \(f\) with

$$ \begin{aligned} &f \ge 3 \,. \end{aligned} $$
(42)

Next, using the spectral form of \({\mathbf {B}_{e}^{\prime}}\), it follows from (4) that

$$ \begin{aligned} &\alpha _{1} = {\mathbf {B}_{e}^{\prime}}\cdot {\mathbf {I}}= \lambda _{e1}^{{\prime }2} + \frac{1}{\lambda _{e1}^{{\prime }2} \lambda _{e3}^{{\prime }2}} + \lambda _{e3}^{ {\prime }2} \ge 3 \,, \\ &\alpha _{2} = {\mathbf {B}_{e}^{\prime}}\cdot {\mathbf {B}_{e}^{\prime}}= \lambda _{e1}^{{\prime }4} + \frac{1}{\lambda _{e1}^{{\prime }4} \lambda _{e3}^{{\prime }4}} + \lambda _{e3}^{ {\prime }4} \ge 3 \,, \\ &\alpha _{2} = \big(\frac{\alpha _{1}}{3} {\mathbf {I}}+ {\mathbf {B}_{e}^{\prime \prime }}\big) \cdot \big(\frac{\alpha _{1}}{3} {\mathbf {I}}+ {\mathbf {B}_{e}^{\prime \prime }}\big) = \frac{\alpha _{1}^{2}}{3} + {\mathbf {B}_{e}^{\prime \prime }}\cdot {\mathbf {B}_{e}^{\prime \prime }}\,, \\ &\alpha _{2} \ge \frac{\alpha _{1}^{2}}{3} \ge \alpha _{1} \ge 3 \,, \\ &{\mathbf {B}_{e}^{\prime}}^{-1} \cdot {\mathbf {I}}= \frac{1}{\lambda _{e1}^{{\prime }2}} + \lambda _{e1}^{ {\prime }2} \lambda _{e3}^{{\prime }2} + \frac{1}{\lambda _{e3}^{{\prime }2}} \ge 3 \,. \end{aligned} $$
(43)

Then, using (12), it can be shown that

$$ \begin{aligned} &{\mathbf {A}}_{p} \cdot {\mathbf {I}}= 3 \big(\frac{\alpha _{1}}{3} - \frac{3}{{\mathbf {B}_{e}^{\prime}}^{-1} \cdot {\mathbf {I}}} \big) \ge 0 \,, \\ &{\mathbf {A}}_{p} \cdot {\mathbf {B}_{e}^{\prime}}= \alpha _{2} - \frac{3 \alpha _{1}}{{\mathbf {B}_{e}^{\prime}}^{-1} \cdot {\mathbf {I}}} \ge \alpha _{1} \big(1 - \frac{3}{{\mathbf {B}_{e}^{\prime}}^{-1} \cdot {\mathbf {I}}}\big) \ge 0 \,. \end{aligned} $$
(44)

Furthermore, it can be numerically shown that

$$ \begin{aligned} &{\mathbf {A}}_{p} \cdot {\mathbf {B}_{e}^{\prime}}\ge {\mathbf {A}}_{p} \cdot {\mathbf {I}}\,, \end{aligned} $$
(45)

which prove the results (18).

Appendix B: Details of Some Derivatives

With the help of (28) it can be shown that

$$\begin{aligned} & \frac{{\partial }\lambda _{e1}^{{\prime }}}{{\partial }\alpha _{1}} = \frac{1}{2 \lambda _{e1}^{{\prime }}} \Big[ \frac{1}{3} + \frac{2}{3} \cos \big( \frac{\pi}{6} + \beta \big) \frac{{\partial }B}{{\partial }\alpha _{1}} - \frac{2B}{3} \sin \big(\frac{\pi}{6} + \beta \big) \frac{{\partial }\beta}{ {\partial }\alpha _{1}} \Big]\,, \\ & \frac{{\partial }\lambda _{e1}^{{\prime }}}{{\partial }\alpha _{2}} = \frac{1}{2 \lambda _{e1}^{{\prime }}} \Big[ \frac{2}{3} \cos \big( \frac{\pi}{6} + \beta \big) \frac{{\partial }B}{{\partial }\alpha _{2}} - \frac{2B}{3} \sin \big(\frac{\pi}{6} + \beta \big) \frac{{\partial }\beta}{ {\partial }\alpha _{2}} \Big]\,, \\ & \frac{{\partial }\lambda _{e2}^{{\prime }}}{{\partial }\alpha _{1}} = \frac{1}{2 \lambda _{e2}^{{\prime }}} \Big[ \frac{1}{3} + \frac{2}{3} \sin \big( \beta \big) \frac{{\partial }B}{{\partial }\alpha _{1}} + \frac{2B}{3} \cos \big(\beta \big) \frac{{\partial }\beta}{ {\partial }\alpha _{1}} \Big]\,, \\ & \frac{{\partial }\lambda _{e2}^{{\prime }}}{{\partial }\alpha _{2}} = \frac{1}{2 \lambda _{e2}^{{\prime }}} \Big[\frac{2}{3} \sin \big( \beta \big) \frac{{\partial }B}{{\partial }\alpha _{2}} + \frac{2B}{3} \cos \big(\beta \big) \frac{{\partial }\beta}{ {\partial }\alpha _{2}} \Big]\,, \\ & \frac{{\partial }\lambda _{e3}^{{\prime }}}{{\partial }\alpha _{1}} = \frac{1}{2 \lambda _{e3}^{{\prime }}} \Big[ \frac{1}{3} - \frac{2}{3} \cos \big( \frac{\pi}{6} - \beta \big) \frac{{\partial }B}{{\partial }\alpha _{1}} - \frac{2B}{3} \sin \big(\frac{\pi}{6} - \beta \big) \frac{{\partial }\beta}{ {\partial }\alpha _{1}} \Big]\,, \\ & \frac{{\partial }\lambda _{e3}^{{\prime }}}{{\partial }\alpha _{2}} = \frac{1}{2 \lambda _{e3}^{{\prime }}} \Big[- \frac{2}{3} \cos \big( \frac{\pi}{6} - \beta \big) \frac{{\partial }B}{{\partial }\alpha _{2}} - \frac{2B}{3} \sin \big(\frac{\pi}{6} - \beta \big) \frac{{\partial }\beta}{ {\partial }\alpha _{2}} \Big]\,. \end{aligned}$$
(46)

Moreover, using (31), it follows that

$$ \begin{aligned} &\frac{{\partial }B}{{\partial }\alpha _{1}} = - \frac{\alpha _{1}}{2B} \,, \quad \frac{{\partial }B}{{\partial }\alpha _{2}} =\frac{3}{4B} \,, \\ &C = \frac{27-\alpha _{1}^{3}+3 \alpha _{1} B^{2}}{2B^{3}} = -\sin (3 \beta ) \,, \\ & \frac{{\partial }C}{{\partial }\alpha _{1}} = \frac{3\big[\alpha _{1}(27-\alpha _{1}^{3})- \alpha _{1}^{2} B^{2} +2 B^{4}\big]}{4B^{5}} \,, \quad \frac{{\partial }C}{{\partial }\alpha _{2}} = - \frac{9\big(27-\alpha _{1}^{3}+\alpha _{1} B^{2}\big)}{8B^{5}} \,, \\ &\frac{{\partial }\beta}{ {\partial }\alpha _{1}} =- \frac{\alpha _{1}(27-\alpha _{1}^{3})- \alpha _{1}^{2} B^{2} +2 B^{4}}{4B^{5} \cos (3\beta )} \,, \quad \frac{{\partial }\beta}{ {\partial }\alpha _{2}} = \frac{3\big(27-\alpha _{1}^{3}+\alpha _{1} B^{2}\big)}{8B^{5} \cos (3\beta )} \,. \end{aligned} $$
(47)

Again, using (31), it follows that

$$ \begin{aligned} &27-\alpha _{1}^{3} = -3 \alpha _{1} B^{2}- 2B^{3} \sin (3 \beta ) \,, \end{aligned} $$
(48)

which can be used to deduce that

$$ \begin{aligned} &\frac{{\partial }\beta}{ {\partial }\alpha _{1}} = \frac{\alpha _{1} B \sin (3 \beta )+2 \alpha _{1}^{2}-B^{2}}{2B^{3} \cos (3 \beta )} \,, \quad \frac{{\partial }\beta}{ {\partial }\alpha _{2}} = - \frac{3 [B \sin (3 \beta ) + \alpha _{1}]}{4 B^{3} \cos (3 \beta )} \,. \end{aligned} $$
(49)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M.B., Heiduschke, K. A Generalized Ogden-Type Elastically Isotropic Hyperelastic Model Including Elastic-Viscoplastic Response. J Elast 153, 359–372 (2023). https://doi.org/10.1007/s10659-023-09995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-023-09995-8

Keywords

Mathematics Subject Classification

Navigation