Skip to main content
Log in

Dynamic Concentrations and Potentials of Embedded Eccentrically Coated Magneto-Electro-Elastic Fiber Subjected to Anti-Plane Shear Waves

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper examines the problem of the fully coupled magneto-electro-elastic (MEE) scattering of SH-waves incident upon a heterogeneous MEE scatterer which is embedded in an unbounded medium. The scatterer consists of a circular core and a circular encapsulator with eccentricity. All three regions: the core, encapsulator, and the surrounding matrix have distinct MEE properties and fully coupled constitutive relations. The generated coupled MEE fields coexist simultaneously in all these regions without resort to any simplifying assumptions. The precise description of the multifunctionality involves the solution of three fully coupled partial differential equations in three different regions. The associated Green’s function equations involve 9 independent components of Green’s functions. The behaviors of the regions are described by the generalized constitutive equations suitable for transversely isotropic MEE properties. Conventionally, wave function approach has been used to study the elastodynamic fields associated with the purely elastic axisymmetric problems; such a treatment encounters serious difficulties in the presence of eccentricity. As a rigorous analytical remedy the dynamic magneto-electro-mechanical equivalent inclusion method (DMEMEIM) will be developed in this work. To this end, the notions of eigenstress, eigenbody-force, eigenelectric, and eigenmagnetic fields will be introduced. As it will be shown, the employment of these notions in conjunction with the eigenfunction space of the pertinent coupled field equations provides a meticulous mathematical framework for the treatment of the proposed problem. The exact analytical formulation for the fully coupled total MEE scattering cross-section is derived. The ramifications of the MEE couplings as well as the wavenumber on the induced scattered fields are considered. As it will be seen, the magnetic field has a substantial effect on the total scattering cross-section. The interfacial stresses are remarkably affected not only by the eccentricity, but also by the magnetic parameters. Moreover, the dynamic electric displacement concentration factor (DEDCF), the dynamic stress concentration factor (DSCF), the electric potential, and the magnetic potential will be examined for different wavenumbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barratt, P., Collins, W.: The scattering cross-section of an obstacle in an elastic solid for plane harmonic waves. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 61, pp. 969–981. Cambridge University Press, Cambridge (1965)

    Google Scholar 

  2. Bing, J., Daining, F., Kehchih, H.: The effective properties of piezocomposites, part I: single inclusion problem. Acta Mech. Sin. 13(4), 339–346 (1997)

    Article  Google Scholar 

  3. Chen, P., Shen, Y.: Propagation of axial shear magneto–electro-elastic waves in piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 44(5), 1511–1532 (2007)

    Article  MATH  Google Scholar 

  4. Chen, P., Shen, Y., Tian, X.: Dynamic potentials and Green’s functions of a quasi-plane magneto-electro-elastic medium with inclusion. Int. J. Eng. Sci. 44(8–9), 540–553 (2006)

    Article  MATH  Google Scholar 

  5. Dunn, M.L., Wienecke, H.: Inclusions and inhomogeneities in transversely isotropic piezoelectric solids. Int. J. Solids Struct. 34(27), 3571–3582 (1997)

    Article  MATH  Google Scholar 

  6. Eringen, A.C., Suhubi, E.S.: Elastodynamics. Vol II. Academic Press, New York (1975)

    MATH  Google Scholar 

  7. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 241(1226), 376–396 (1957)

    MATH  Google Scholar 

  8. Eshelby, J.D.: Elastic inclusion and inhomogeneities. Prog. Solid Mech. 2, 89–140 (1961)

    Google Scholar 

  9. Fan, H., Qin, S.: A piezoelectric sensor embedded in a non-piezoelectric matrix. Int. J. Eng. Sci. 33(3), 379–388 (1995)

    Article  MATH  Google Scholar 

  10. Fang, X.Q., Hu, C., Huang, W.H.: Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves. Eur. J. Mech. A, Solids 26(6), 1016–1028 (2007)

    Article  MATH  Google Scholar 

  11. Fu, L.S., Mura, T.: The determination of the elastodynamic fields of an ellipsoidal inhomogeneity. J. Appl. Mech. 50(2), 390–396 (1983)

    Article  MATH  Google Scholar 

  12. Furuhashi, R., Mura, T.: On the equivalent inclusion method and impotent eigenstrains. J. Elast. 9(3), 263–270 (1979)

    Article  Google Scholar 

  13. Hashemi, R., Weng, G., Kargarnovin, M., Shodja, H.: Piezoelectric composites with periodic multi-coated inhomogeneities. Int. J. Solids Struct. 47(21), 2893–2904 (2010)

    Article  MATH  Google Scholar 

  14. Hori, M., Nemat-Nasser, S.: Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater. 14(3), 189–206 (1993)

    Article  Google Scholar 

  15. Jin, X., Wang, Z., Zhou, Q., Keer, L.M., Wang, Q.: On the solution of an elliptical inhomogeneity in plane elasticity by the equivalent inclusion method. J. Elast. 114(1), 1–18 (2014)

    Article  MATH  Google Scholar 

  16. Kuo, H.Y., Yu, S.H.: Effect of the imperfect interface on the scattering of SH wave in a piezoelectric cylinder in a piezomagnetic matrix. Int. J. Eng. Sci. 85, 186–202 (2014)

    Article  Google Scholar 

  17. Levin, V.M., Michelitsch, T.M., Gao, H.: Propagation of electroacoustic waves in the transversely isotropic piezoelectric medium reinforced by randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 39(19), 5013–5051 (2002)

    Article  MATH  Google Scholar 

  18. Li, J.Y., Dunn, M.L.: Anisotropic coupled-field inclusion and inhomogeneity problems. Philos. Mag. A 77(5), 1341–1350 (1998)

    Article  Google Scholar 

  19. Li, J.Y., Dunn, M.L.: Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9(6), 404–416 (1998)

    Article  Google Scholar 

  20. Li, Y.D., Lee, K.Y., Zhang, N.: A generalized hypergeometric function method for axisymmetric vibration analysis of a piezoelectric actuator. Eur. J. Mech. A, Solids 31(1), 110–116 (2012)

    Article  MATH  Google Scholar 

  21. Liu, W., Kriz, R.D.: Axial shear waves in fiber-reinforced composites with multiple interfacial layers between fiber core and matrix. Mech. Mater. 31(2), 117–129 (1999)

    Article  Google Scholar 

  22. Michelitsch, T.M., Gao, H., Levin, V.M.: Dynamic Eshelby tensor and potentials for ellipsoidal inclusions. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459(2032), 863–890 (2003)

    Article  MATH  Google Scholar 

  23. Mikata, Y.: Determination of piezoelectric Eshelby tensor in transversely isotropic piezoelectric solids. Int. J. Eng. Sci. 38(6), 605–641 (2000)

    Article  MATH  Google Scholar 

  24. Mikata, Y., Nemat-Nasser, S.: Interaction of a harmonic wave with a dynamically transforming inhomogeneity. J. Appl. Phys. 70(4), 2071–2078 (1991)

    Article  Google Scholar 

  25. Mura, T.: General Theory of Eigenstrains. Micromechanics of Defects in Solids, pp. 1–62. Springer, Berlin (1982)

    Book  Google Scholar 

  26. Mura, T.: Inclusion problems. Appl. Mech. Rev. 41(1), 15–20 (1988)

    Article  Google Scholar 

  27. Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49(10S), S118–S127 (1996)

    Article  Google Scholar 

  28. Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082 (1994)

    Article  Google Scholar 

  29. Pao, Y.H., Mow, C.: Scattering of plane compressional waves by a spherical obstacle. J. Appl. Phys. 34(3), 493–499 (1963)

    Article  MATH  Google Scholar 

  30. Porter, R.: Plate arrays as a perfectly-transmitting negative-refraction metamaterial. Wave Motion 1(100), 102673 (2021)

    Article  MATH  Google Scholar 

  31. Sarvestani, A., Shodja, H., Delfani, M.: Determination of the scattered fields of an SH-wave by an eccentric coating-fiber ensemble using DEIM. Int. J. Eng. Sci. 46(11), 1136–1146 (2008)

    Article  MATH  Google Scholar 

  32. Sato, H., Shindo, Y.: Multiple scattering of plane elastic waves in a fiber-reinforced composite medium with graded interfacial layers. Int. J. Solids Struct. 38(15), 2549–2571 (2001)

    Article  MATH  Google Scholar 

  33. Shindo, Y., Nozaki, H., Datta, S.: Effect of Interface Layers on Elastic Wave Propagation in a Metal Matrix Composite Reinforced by Particles (1995)

    Book  Google Scholar 

  34. Shindo, Y., Niwa, N., Togawa, R.: Multiple scattering of antiplane shear waves in a fiber-reinforced composite medium with interfacial layers. Int. J. Solids Struct. 35(7–8), 733–745 (1998)

    Article  MATH  Google Scholar 

  35. Shodja, H., Delfani, M.: 3D elastodynamic fields of non-uniformly coated obstacles: notion of eigenstress and eigenbody-force fields. Mech. Mater. 41(9), 989–999 (2009)

    Article  Google Scholar 

  36. Shodja, H.M., Shokrolahi-Zadeh, B.: Ellipsoidal domains: piecewise nonuniform and impotent eigenstrain fields. J. Elast. 86(1), 1–18 (2007)

    Article  MATH  Google Scholar 

  37. Shodja, H., Kargarnovin, M., Hashemi, R.: Electroelastic fields in interacting piezoelectric inhomogeneities by the electromechanical equivalent inclusion method. Smart Mater. Struct. 19(3), 035025 (2010)

    Article  Google Scholar 

  38. Shodja, H.M., Jarfi, H., Rashidinejad, E.: The electro-elastic scattered fields of an SH-wave by an eccentric two-phase circular piezoelectric sensor in an unbounded piezoelectric medium. Mech. Mater. 75, 1–12 (2014)

    Article  Google Scholar 

  39. Van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27(1), 28–37 (1972)

    Google Scholar 

  40. Wang, J., Michelitsch, T.M., Gao, H., Levin, V.M.: On the solution of the dynamic Eshelby problem for inclusions of various shapes. Int. J. Solids Struct. 42(2), 353–363 (2005)

    Article  MATH  Google Scholar 

  41. Xiao, Z., Bai, J.: On piezoelectric inhomogeneity related problem—part I: a close-form solution for the stress field outside a circular piezoelectric inhomogeneity. Int. J. Eng. Sci. 37(8), 945–959 (1999)

    Article  Google Scholar 

  42. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hossein M. Shodja: Supervision, Problem proposal, Theoretical development, Examination of the formulations and results, Rewriting and editing. Ali Ordookhani: Conceptualization, Formalization, Software, Validation, Writing the first draft. Ali Tehranchi: Conceptualization, Software, Discussion of the results, Editing.

Corresponding author

Correspondence to H. M. Shodja.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For a given field point, \(\boldsymbol{\Theta}\) within any of the specified regions shown in Fig. 17, the functions \(\mathscr{F}_{n}^{(j)}{(r)}, \mathscr{G}_{n}^{(j)}{(r)}, \mathscr{H}(r)\), and \(\mathscr{K}(r)\) pertinent to Eqs. (41)-(43) in terms of the unknown functions, \(\imath _{n}^{(j)}{(r)}\) and \(\jmath _{n}^{(j)}{(r)} (n=0,1,2,\ldots ; j=1,2,3,4,5,6,7)\) are obtained after some manipulations

$$\begin{aligned} \frac{4 \textbf{i} \overset{\Omega}{\rho}\omega ^{2}}{k^{2}} \mathscr{F}_{n}^{(j)}{(r)} =&\pi H_{n}^{(1)}{(kr)}\int _{0}^{r} \imath _{n}^{(j)}{(r^{\prime})}J_{n}{(kr^{\prime})}r^{\prime }dr^{ \prime} \\ +&\pi J_{n}{(kr)}\int _{r}^{R_{0}}\imath _{n}^{(j)}{(r^{\prime})}H_{n}^{(1)}{(kr^{ \prime})}r^{\prime }dr^{\prime} \\ +&\alpha _{n} J_{n}{(kr)}\int _{0}^{\pi}\int _{R_{0}}^{R_{(\theta ^{ \prime})}}F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})}H_{n}^{(1)}{(kr^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime}, \hbox{$ \boldsymbol{\Theta}\in \Omega $,} \end{aligned}$$
(52)
$$\begin{aligned} \frac{4 \textbf{i} \overset {\Gamma}{\rho}\omega ^{2}}{k^{2}} \mathscr{F}_{n}^{(j)}{(r)} =&\pi H_{n}^{(1)}{(kr)}\int _{0}^{R_{0}} \imath _{n}^{(j)}{(r^{\prime})}J_{n}{(kr^{\prime})}r^{\prime }dr^{ \prime} \\ +&\pi H_{n}^{(1)}{(kr)}\int _{R_{0}}^{r}\jmath _{n}^{(j)}{(r^{\prime})}J_{n}{(kr^{ \prime})}r^{\prime }dr^{\prime} \\ +&\alpha _{n} J_{n}{(kr)}\int _{0}^{\pi}\int _{r}^{R_{(\theta ^{ \prime})}}F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})}H_{n}^{(1)}{(kr^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime}, \hbox{$ \boldsymbol{\Theta}\in \Gamma _{0}$,} \end{aligned}$$
(53)
$$\begin{aligned} \frac{4 \textbf{i} \overset{\circ}{\rho}\omega ^{2}}{k^{2}}\mathscr{F}_{n}^{(j)}{(r)} =& \pi H_{n}^{(1)}{(kr)}\int _{0}^{R_{0}}\imath _{n}^{(j)}{(r^{\prime})}J_{n}{(kr^{ \prime})}r^{\prime }dr^{\prime} \\ +&\pi H_{n}^{(1)}{(kr)}\int _{R_{0}}^{r}\jmath _{n}^{(j)}{(r^{\prime})}J_{n}{(kr^{ \prime})}r^{\prime }dr^{\prime} \\ +&\alpha _{n} J_{n}{(kr)}\int _{0}^{\pi}\int _{r}^{R_{(\theta ^{ \prime})}}F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})} H_{n}^{(1)}{(kr^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime} \\ -&\alpha _{n} J_{n}{(kr)}\int _{0}^{\theta _{0}(r)}\int _{r}^{R_{( \theta ^{\prime})}}F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})} H_{n}^{(1)}{(kr^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime} \\ +&\alpha _{n} H_{n}^{(1)}{(kr)}\int _{0}^{\theta _{0}(r)}\int _{r}^{R_{( \theta ^{\prime})}}F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})} J_{n}(kr^{ \prime})r^{\prime }dr^{\prime }d\theta ^{\prime}, \hbox{$ \boldsymbol{\Theta}\in \Gamma _{1}$,} \end{aligned}$$
(54)

in which \(\alpha _{0}=1\) and \(\alpha _{n}=2\) for \(n=1,2,3,\ldots \)

$$\begin{aligned} 4\mathscr{G}_{n}^{(j)}{(r)} =&\frac{r^{-n}}{n}\int _{0}^{r}(r^{\prime})^{n} \imath _{n}^{(j)}{(r^{\prime})}r^{\prime }dr^{\prime}+ \frac{r^{n}}{n}\int _{r}^{R_{0}}(r^{\prime})^{-n} \imath _{n}^{(j)}{(r^{ \prime})}r^{\prime }dr^{\prime} \\ +&\frac{2}{\pi}\frac{r^{n}}{n}\int _{0}^{\pi}\int _{R_{0}}^{R( \theta ^{\prime})}(r^{\prime})^{-n} F_{n}^{(j)}{(r^{\prime},\theta ^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime},\hbox{$ \boldsymbol{\Theta}\in \Omega $,} \end{aligned}$$
(55)
$$\begin{aligned} 4\mathscr{G}_{n}^{(j)}{(r)} =&\frac{r^{-n}}{n}\int _{0}^{R_{0}}(r^{ \prime})^{n} \imath _{n}^{(j)}{(r^{\prime})}r^{\prime }dr^{\prime}+ \frac{r^{-n}}{n}\int _{R_{0}}^{r}(r^{\prime})^{n} \jmath _{n}^{(j)}{(r^{ \prime})}r^{\prime }dr^{\prime} \\ +&\frac{2}{\pi}\frac{r^{n}}{n}\int _{0}^{\pi}\int _{r}^{R(\theta ^{ \prime})}(r^{\prime})^{-n} F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})}r^{ \prime }dr^{\prime }d\theta ^{\prime},\hbox{$\boldsymbol{\Theta}\in \Gamma _{0}$,} \end{aligned}$$
(56)
$$\begin{aligned} 4\mathscr{G}_{n}^{(j)}{(r)} =&\frac{r^{-n}}{n}\int _{0}^{R_{0}}(r^{ \prime})^{n} \imath _{n}^{(j)}{(r^{\prime})}r^{\prime }dr^{\prime}+ \frac{r^{-n}}{n}\int _{R_{0}}^{r}(r^{\prime})^{n} \jmath _{n}^{(j)}{(r^{ \prime})}r^{\prime }dr^{\prime} \\ +&\frac{2}{\pi}\frac{r^{n}}{n}\int _{0}^{\pi}\int _{r}^{R(\theta ^{ \prime})}(r^{\prime})^{-n} F_{n}^{(j)}{(r^{\prime},\theta ^{\prime})}r^{ \prime }dr^{\prime }d\theta ^{\prime} \\ -&\frac{2}{\pi}\frac{r^{-n}}{n}\int _{0}^{\theta _{0}(r)}\int _{r}^{R( \theta ^{\prime})}(r^{\prime})^{n} F_{n}^{(j)}{(r^{\prime},\theta ^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime} \\ -&\frac{2}{\pi}\frac{r^{n}}{n}\int _{0}^{\theta _{0}(r)}\int _{r}^{R( \theta ^{\prime})}(r^{\prime})^{-n} F_{n}^{(j)}{(r^{\prime},\theta ^{ \prime})}r^{\prime }dr^{\prime }d\theta ^{\prime},\hbox{$ \boldsymbol{\Theta}\in \Gamma _{1}$,} \end{aligned}$$
(57)
$$ \mathscr{H}(r)=\frac{1}{r}\int _{0}^{r} \frac{\overset{\Omega}{\mu}}{\overset{\Omega}{a^{*}}}\left ( \overset{\Omega}{\kappa}\ \imath _{0}^{(4)}{(r^{\prime})}+ \overset{\Omega}{d}\ \imath _{0}^{(6)}{(r^{\prime})}\right )r^{\prime }dr^{ \prime },\hbox{$\boldsymbol{\Theta}\in \Omega $,} $$
(58)
$$\begin{aligned} \mathscr{H}(r) =&\frac{1}{r}\int _{0}^{R_{0}} \frac{\overset{\Gamma}{\mu}}{\overset{\Gamma}{a^{*}}}\left ( \overset{\Gamma}{\kappa}\ \imath _{0}^{(4)}{(r^{\prime})}+ \overset{\Gamma}{d}\ \imath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime} \\ +&\frac{1}{r}\int _{R_{0}}^{r} \frac{\overset{\Gamma}{\mu}}{\overset{\Gamma}{a^{*}}}\left ( \overset{\Gamma}{\kappa}\ \jmath _{0}^{(4)}{(r^{\prime})}+ \overset{\Gamma}{d}\ \jmath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime },\hbox{$\boldsymbol{\Theta}\in \Gamma _{0}$,} \end{aligned}$$
(59)
$$\begin{aligned} \mathscr{H}(r) =&\frac{1}{r}\int _{0}^{R_{0}} \frac{\overset{\circ}{\mu}}{\overset{\circ}{a^{*}}}\left ( \overset{\circ}{\kappa}\ \imath _{0}^{(4)}{(r^{\prime})}+ \overset{\circ}{d}\ \imath _{0}^{(6)}{(r^{\prime})}\right )r^{\prime }dr^{ \prime} \\ +&\frac{1}{r}\int _{R_{0}}^{r} \frac{\overset{\circ}{\mu}}{\overset{\circ}{a^{*}}}\left ( \overset{\circ}{\kappa}\ \jmath _{0}^{(4)}{(r^{\prime})}+ \overset{\circ}{d}\ \jmath _{0}^{(6)}{(r^{\prime})}\right )r^{\prime }dr^{ \prime} \\ -&\frac{1}{r\pi}\int _{0}^{\theta _{0}(r)}\int _{r}^{R(\theta ^{ \prime})}\frac{\overset{\circ}{\mu}}{\overset{\circ}{a^{*}}}\left ( \overset{\circ}{\kappa}\ F_{0}^{(4)}{(r^{\prime},\theta ^{\prime})}+ \overset{\circ}{d}\ F_{0}^{(6)}{(r^{\prime},\theta ^{\prime})}\right )r^{ \prime }dr^{\prime }d\theta ^{\prime },\hbox{$\boldsymbol{\Theta}\in \Gamma _{1}$,} \end{aligned}$$
(60)
$$ \mathscr{K}(r)=\frac{1}{r}\int _{0}^{r} \frac{\overset{\Omega}{\kappa}}{\overset{\Omega}{a^{*}}}\left (- \overset{\Omega}{d}\ \imath _{0}^{(4)}{(r^{\prime})}+ \overset{\Omega}{\mu}\ \imath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime }, \hbox{$\boldsymbol{\Theta}\in \Omega $,} $$
(61)
$$\begin{aligned} \mathscr{K}(r) =&\frac{1}{r}\int _{0}^{R_{0}} \frac{\overset{\Gamma}{\kappa}}{\overset{\Gamma}{a^{*}}}\left (- \overset{\Gamma}{d}\ \imath _{0}^{(4)}{(r^{\prime})}+ \overset{\Gamma}{\mu}\ \imath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime} \\ +&\frac{1}{r}\int _{R_{0}}^{r} \frac{\overset{\Gamma}{\kappa}}{\overset{\Gamma}{a^{*}}}\left (- \overset{\Gamma}{d}\ \jmath _{0}^{(4)}{(r^{\prime})}+ \overset{\Gamma}{\mu}\ \jmath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime }, \hbox{$\boldsymbol{\Theta}\in \Gamma _{0}$,} \end{aligned}$$
(62)
$$\begin{aligned} \mathscr{K}(r) =&\frac{1}{r}\int _{0}^{R_{0}} \frac{\overset{\circ}{\kappa}}{\overset{\circ}{a^{*}}}\left (- \overset{\circ}{d}\ \imath _{0}^{(4)}{(r^{\prime})}+ \overset{\circ}{\mu}\ \imath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime} \\ +&\frac{1}{r}\int _{R_{0}}^{r} \frac{\overset{\circ}{\kappa}}{\overset{\circ}{a^{*}}}\left (- \overset{\circ}{d}\ \jmath _{0}^{(4)}{(r^{\prime})}+ \overset{\circ}{\mu}\ \jmath _{0}^{(6)}{(r^{\prime})}\right )r^{ \prime }dr^{\prime} \\ -&\frac{1}{r\pi}\int _{0}^{\theta _{0}(r)}\int _{r}^{R(\theta ^{ \prime})}\left (-\overset{\circ}{d}\ F_{0}^{(4)}{(r^{\prime},\theta ^{ \prime})}+\overset{\circ}{\mu}\ F_{0}^{(6)}{(r^{\prime},\theta ^{ \prime})}\right )r^{\prime }dr^{\prime }d\theta ^{\prime }, \hbox{$ \boldsymbol{\Theta}\in \Gamma _{1}$,} \end{aligned}$$
(63)

where

$$ F_{n}^{(j)}(r^{\prime},\theta ^{\prime})=\cos (n\theta ^{\prime}) \sum _{m=0}^{\infty}\jmath _{m}^{(j)}(r^{\prime})\cos (m\theta ^{ \prime}), j=1,3,4,6, $$
(64)
$$ F_{n}^{(j)}(r^{\prime},\theta ^{\prime})=\sin (n\theta ^{\prime}) \sum _{m=1}^{\infty}\jmath _{m}^{(j)}(r^{\prime})\sin (m\theta ^{ \prime}), j=2,5,7. $$
(65)
Fig. 17
figure 17

The geometric details of the integration bounds for the calculation of \(I_{\Omega \cup \Gamma}\)

Appendix B

The unknown functions, \(\mathscr{P}(r)\) and \(\mathscr{Q}(r)\) and the unknown coefficients, \(\mathscr{S}_{n}, \mathscr{N}_{n}, \mathscr{M}_{n}, \mathscr{L}_{n}^{(4)}, \mathscr{L}_{n}^{(5)}, \mathscr{L}_{n}^{(6)}\), and \(\mathscr{L}_{n}^{(7)} (n=0,1,2,\ldots )\) appearing in relations (46)-(48) are given as

$$\begin{aligned} \mathscr{P}(r) =& \frac{1}{r}\bigg[\int _{0}^{R_{0}}( \frac{\overset{D}{\mu}}{\overset{D}{a^{*}}})(\overset{D}{\kappa}\ \imath _{0}^{(4)}(r^{\prime})+\overset{D}{d}\ \imath _{0}^{(6)}(r^{ \prime}))r^{\prime }dr^{\prime} \\ +&\frac{1}{\pi}\int _{0}^{\pi}\int _{R_{0}}^{R(\theta ^{\prime})}( \frac{\overset{D}{\mu}}{\overset{D}{a^{*}}})(\overset{D}{\kappa}\ F_{0}^{(4)}(r^{ \prime},\theta ^{\prime})+\overset{D}{d}\ F_{0}^{(6)}(r^{\prime}, \theta ^{\prime}))r^{\prime }dr^{\prime }d\theta ^{\prime}\bigg], \end{aligned}$$
(66)
$$\begin{aligned} \mathscr{Q}(r) =& \frac{1}{r}\bigg[\int _{0}^{R_{0}}( \frac{\overset{D}{\kappa}}{\overset{D}{a^{*}}})(-\overset{D}{d}\ \imath _{0}^{(4)}(r^{\prime})+\overset{D}{\mu}\ \imath _{0}^{(6)}(r^{ \prime}))r^{\prime }dr^{\prime} \\ +&\frac{1}{\pi}\int _{0}^{\pi}\int _{R_{0}}^{R(\theta ^{\prime})}( \frac{\overset{D}{\kappa}}{\overset{D}{a^{*}}})(-\overset{D}{d}\ F_{0}^{(4)}(r^{ \prime},\theta ^{\prime})+\overset{D}{\mu}\ F_{0}^{(6)}(r^{\prime}, \theta ^{\prime}))r^{\prime }dr^{\prime }d\theta ^{\prime}\bigg], \end{aligned}$$
(67)
$$\begin{aligned} \mathscr{L}_{n}^{(j)} = \frac{1}{2}\int _{0}^{R_{0}}(r^{\prime})^{n} \imath _{n}^{(j)}(r^{\prime})r^{\prime }dr^{\prime }+\frac{2}{\pi} \int _{0}^{\pi}\int _{R_{0}}^{R(\theta ^{\prime})}(r^{\prime})^{n} F_{n}^{(j)}(r^{ \prime},\theta ^{\prime})r^{\prime }dr^{\prime }d\theta ^{\prime}, \\ j=4,5,6,7; n=0,1,2,\ldots , \end{aligned}$$
(68)
$$\begin{aligned} \mathscr{S}_{0} =& 2\Pi _{0}^{(3)}+k\left [\Pi _{1}^{(1)}+\Pi _{1}^{(2)}+ \overset{D}{\kappa}\frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{1}^{(4)}+ \overset{D}{\kappa} \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{1}^{(5)}+ \overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{1}^{(6)}+ \overset{D}{\mu} \frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{1}^{(7)} \right ], \end{aligned}$$
(69)
$$\begin{aligned} \mathscr{S}_{1}= 2\Pi _{1}^{(3)}+ k&\left [\Pi _{2}^{(1)}+\Pi _{2}^{(2)}+ \overset{D}{\kappa}\frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{2}^{(4)}+ \overset{D}{\kappa} \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{2}^{(5)} +\overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{2}^{(6)}+ \overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{2}^{(7)} \right ] \\ -2 k&\left [\Pi _{0}^{(1)}+\overset{D}{\kappa} \frac{\overset{D}{b^{*}}}{\overset{D}{a*}}\Pi _{0}^{(4)}+ \overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}} \Pi _{0}^{(6)} \right ], \end{aligned}$$
(70)
$$\begin{aligned} \mathscr{S}_{n} = 2\Pi _{n}^{(3)}+k\left [\Pi _{n+1}^{(1)}+\Pi _{n+1}^{(2)}+ \overset{D}{\kappa}\frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{n+1}^{(4)}+ \overset{D}{\kappa} \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{n+1}^{(5)} +\overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{n+1}^{(6)}+ \overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{n+1}^{(7)} \right ] \\ - k\left [\Pi _{n-1}^{(1)}-\Pi _{n-1}^{(2)} +\overset{D}{\kappa} \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{n-1}^{(4)}- \overset{D}{\kappa}\frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}}\Pi _{n-1}^{(5)} +\overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{n-1}^{(6)} -\overset{D}{\mu}\frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}}\Pi _{n-1}^{(7)} \right ] , \\ n = 2,3,\ldots ,\qquad \qquad \qquad \end{aligned}$$
(71)
$$\begin{aligned} \mathscr{N}_{0} =& \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}} \Bigg\{ 2\Pi _{0}^{(3)}+k\bigg[\Pi _{1}^{(1)}+\Pi _{1}^{(2)} - \overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(4)}-\overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(5)} \\ +& \overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(6)} +\overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(7)}\bigg]\Bigg\} , \end{aligned}$$
(72)
$$\begin{aligned} \mathscr{N}_{1} =& \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}} \Bigg\{ 2\Pi _{0}^{(3)}+k\bigg[\Pi _{1}^{(1)}+\Pi _{1}^{(2)} - \overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(4)}-\overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(5)} \\ +& \overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(6)} +\overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(7)}\bigg] \\ -&2k\bigg[\Pi _{0}^{(1)}-\overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{0}^{(4)}+ \overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{1}^{(6)}\bigg]\Bigg\} , \end{aligned}$$
(73)
$$\begin{aligned} \mathscr{N}_{n} =& \frac{\overset{D}{b^{*}}}{\overset{D}{a^{*}}} \Bigg\{ 2\Pi _{n}^{(3)}+k\bigg[\Pi _{n+1}^{(1)}+\Pi _{n+1}^{(2)}- \overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n+1}^{(4)}-\overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n+1}^{(5)} \\ +&\overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n+1}^{(6)}+ \overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n+1}^{(7)}\bigg]-k\bigg[\Pi _{n-1}^{(1)}-\Pi _{n-1}^{(2)} \\ -&\overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}} -\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n-1}^{(4)} + \overset{D}{\kappa}\frac{\overset{D}{q}-\overset{D}{\mu}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n-1}^{(5)}+ \overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n-1}^{(6)} \\ -&\overset{D}{\mu}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{b^{*}}} \Pi _{n-1}^{(7)}\bigg]\Bigg\} , \qquad n=2,3,\ldots , \end{aligned}$$
(74)
$$\begin{aligned} \mathscr{M}_{0} =& \frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}} \Bigg\{ 2\Pi _{0}^{(3)}+k\bigg[\Pi _{1}^{(1)}+\Pi _{1}^{(2)} + \overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(4)} +\overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(5)} \\ -& \overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\hat{\eta}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(6)} -\overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(7)}\bigg]\Bigg\} , \end{aligned}$$
(75)
$$\begin{aligned} \mathscr{M}_{1} =& \frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}} \Bigg\{ 2\Pi _{1}^{(3)}+k\bigg[\Pi _{1}^{(1)}+\Pi _{1}^{(2)} + \overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(4)}+\overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(5)} \\ -& \overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\hat{\eta}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(6)} -\overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{1}^{(7)}\bigg] \\ -& 2k\bigg[\Pi _{0}^{(1)}+\overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n-1}^{(4)}-\overset{D}{k} \frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n-1}^{(5)} \\ -&\overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n-1}^{(6)} +\overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n-1}^{(7)}\bigg]\Bigg\} , \end{aligned}$$
(76)
$$\begin{aligned} \mathscr{M}_{n} =& \frac{\overset{D}{c^{*}}}{\overset{D}{a^{*}}} \Bigg\{ 2\Pi _{n}^{(3)}+k\bigg[\Pi _{n+1}^{(1)}+\Pi _{n+1}^{(2)} + \overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n+1}^{(4)} \\ +& \overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n+1}^{(5)}-\overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\hat{\eta}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n+1}^{(6)}- \overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{n+1}^{(7)}\bigg] \\ -& k\bigg[\Pi _{n-1}^{(1)}-\Pi _{n-1}^{(2)}+\overset{D}{\kappa}\frac{\overset{D}{e}\ \overset{D}{q}-\overset{D}{d}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{0}^{(4)}- \overset{D}{\mu}\frac{\overset{D}{e}^{2}-\overset{D}{\kappa}(\overset{D}{\hat{\eta}}-\overset{D}{\eta})}{\overset{D}{c^{*}}} \Pi _{0}^{(6)}\bigg]\Bigg\} , \\ n&=2,3,\ldots , \end{aligned}$$
(77)

in which

$$ \frac{4\mathbf{i}\overset{D}{\rho}\omega ^{2}}{k^{2}} \Pi _{n}^{(j)}= \pi \int _{0}^{R_{0}}\imath _{n}^{(j)}(r^{\prime})J_{n}(kr^{\prime})r^{ \prime }dr^{\prime}+\alpha _{n}\int _{0}^{\pi}\int _{R_{0}}^{R( \theta ^{\prime})}F_{n}^{(j)}(r^{\prime},\theta ^{\prime})J_{n}(kr^{ \prime})r^{\prime }dr^{\prime }d\theta ^{\prime}. $$
(78)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shodja, H.M., Ordookhani, A. & Tehranchi, A. Dynamic Concentrations and Potentials of Embedded Eccentrically Coated Magneto-Electro-Elastic Fiber Subjected to Anti-Plane Shear Waves. J Elast 153, 119–153 (2023). https://doi.org/10.1007/s10659-022-09967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09967-4

Keywords

Mathematics Subject Classification

Navigation