Skip to main content
Log in

The Saint-Venant Solution of a 3D Tapered Beam

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this article, an extension of the well-known Saint-Venant solution for prismatic beams to tapered beams, i.e., straight beams with linearly varying cross-sections, is presented. The geometry of the tapered beam will be mapped to a reference constant beam, where the 3D equilibrium equations will be expressed, using a differential geometry framework. Then, the asymptotic expansion method will be used to solve these equations, leading to a series of hierarchical problems to solve. The final solution hence obtained is written as a combination of displacement and stress modes, which can be employed as a stress-recovery method for the tapered beam. It is proven in this work that the classical Saint-Venant solution is still valid for the tapered beam, but with the addition of correction modes, representing the effect of the taper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Argyridi, A.K., Sapountzakis, E.J.: Advanced analysis of arbitrarily shaped axially loaded beams including axial warping and distortion. Thin-Walled Struct. 134, 127–147 (2019)

    Article  Google Scholar 

  2. Balduzzi, G., Hochreiner, G., Füssl, J.: Stress recovery from one dimensional models for tapered bi-symmetric thin-walled I beams: deficiencies in modern engineering tools and procedures. Thin-Walled Struct. 119, 934–945 (2017)

    Article  Google Scholar 

  3. Bauchau, O.A., Han, S.: Three-dimensional beam theory for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 9(4), 041011 (2014)

    Article  Google Scholar 

  4. Bertolini, P., Eder, M.A., Taglialegne, L., Valvo, P.S.: Stresses in constant tapered beams with thin-walled rectangular and circular cross sections. Thin-Walled Struct. 137, 527–540 (2019)

    Article  Google Scholar 

  5. Buannic, N., Cartraud, P.: Higher-order effective modeling of periodic heterogeneous beams. I. Asymptotic expansion method. Int. J. Solids Struct. 38(40), 7139–7161 (2001)

    Article  MathSciNet  Google Scholar 

  6. Carrera, E., Pagani, A., Petrolo, M., Zappino, E.: Recent developments on refined theories for beams with applications. Mech. Eng. Rev. 2(2), 00298 (2015)

    Article  Google Scholar 

  7. Choi, S., Kim, Y.Y.: Consistent higher-order beam theory for thin-walled box beams using recursive analysis: membrane deformation under doubly symmetric loads. Eng. Struct. 197, 109430 (2019)

    Article  Google Scholar 

  8. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ration. Mech. Anal. 136(2), 119–161 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A., Tutek, Z.: Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elast. 19(2), 111–161 (1988)

    Article  MathSciNet  Google Scholar 

  10. Corre, G., Lebée, A., Sab, K., Ferradi, M.K., Cespedes, X.: Higher-order beam model with eigenstrains: theory and illustrations. J. Appl. Math. Mech. 98(7), 1040–1065 (2018)

    MathSciNet  Google Scholar 

  11. Corre, G., Lebée, A., Sab, K., Ferradi, M.K., Cespedes, X.: The asymptotic expansion load decomposition elastoplastic beam model. Int. J. Numer. Methods Eng. 116(5), 308–331 (2018)

    MathSciNet  Google Scholar 

  12. Corre, G., Lebée, A., Sab, K., Ferradi, M.K., Cespedes, X.: A new higher-order elastoplastic beam model for reinforced concrete. Meccanica 55(4), 791–813 (2020)

    Article  MathSciNet  Google Scholar 

  13. Demir, Ç., Civalek, Ö.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  Google Scholar 

  14. El Fatmi, R., Ghazouani, N.: Higher order composite beam theory built on Saint-Venant’s solution. Part-I: theoretical developments. Compos. Struct. 93(2), 557–566 (2011)

    Article  Google Scholar 

  15. Ferradi, M.K., Cespedes, X.: A curved beam model with the asymptotic expansion method. Eng. Struct. 241, 112494 (2021)

    Article  Google Scholar 

  16. Ferradi, M.K., Lebée, A., Fliscounakis, A., Cespedes, X., Sab, K.: A model reduction technique for beam analysis with the asymptotic expansion method. Comput. Struct. 172, 11–28 (2016)

    Article  Google Scholar 

  17. Hay, G.E.: The finite displacement of thin rods. Trans. Am. Math. Soc. 51(1), 65–102 (1942)

    Article  MathSciNet  Google Scholar 

  18. Hodges, D., Ho, J., Yu, W.: The effect of taper on section constants for in-plane deformation of an isotropic strip. J. Mech. Mater. Struct. 3(3), 425–440 (2008)

    Article  Google Scholar 

  19. Hodges, D., Rajagopal, A., Ho, J., Yu, W.: Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam. J. Mech. Mater. Struct. 5(6), 963–975 (2011)

    Article  Google Scholar 

  20. Jog, C.S., Mokashi, I.S.: A finite element method for the Saint-Venant torsion and bending problems for prismatic beams. Comput. Struct. 135, 62–72 (2014)

    Article  Google Scholar 

  21. Lebée, A., Sab, K.: A Bending-Gradient model for thick plates. Part I: theory. Int. J. Solids Struct. 48(20), 2878–2888 (2011)

    Article  Google Scholar 

  22. Morandini, M.: Analysis of beam cross section response accounting for large strains and plasticity. Int. J. Solids Struct. 176, 150–172 (2019)

    Article  Google Scholar 

  23. Morandini, M., Chierichetti, M., Mantegazza, P.: Characteristic behavior of prismatic anisotropic beam via generalized eigenvectors. Int. J. Solids Struct. 47(10), 1327–1337 (2010)

    Article  Google Scholar 

  24. Numanoğlu, H.M., Akgöz, B., Civalek, Ö.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Article  Google Scholar 

  25. Trabucho, L., Viaño, J.M.: A new approach of Timoshenko’s beam theory by asymptotic expansion method. ESAIM: Math. Model. Numer. Anal. 24(5), 651–680 (1990)

    Article  MathSciNet  Google Scholar 

  26. Trabucho, L., Viano, J.M.: Mathematical modelling of rods. Handb. Numer. Anal. 4, 487–974 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Veiga, M.F.: Asymptotic method applied to a beam with a variable cross section. In: Asymptotic Methods for Elastic Structures, pp. 237–254. de Gruyter, Berlin (2011)

    Google Scholar 

  28. Yu, W., Hodges, D.H., Ho, J.C.: Variational asymptotic beam sectional analysis–an updated version. Int. J. Eng. Sci. 59, 40–64 (2012)

    Article  MathSciNet  Google Scholar 

  29. https://www.tpi.setec.fr/inspirations/innovation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed-Khalil Ferradi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In this appendix, we demonstrate that the matrix \(\boldsymbol{A}\) defined in (71), is symmetric definite positive.

For the symmetry, only the demonstration of \(A_{34} = A_{43}\) is detailed, since it can be reproduced in the same way for the other necessary relations. By replacing \(\left ( \delta \boldsymbol{\sigma },\delta \boldsymbol{u} \right )\) in (63) with \(\left ( \boldsymbol{\Psi }_{\mathit{II}},\ \boldsymbol{0} \right )\) and in (64) with \(\left ( \boldsymbol{\Psi }_{I},\ \boldsymbol{0} \right )\), the following relations are obtained:

$$ A_{43}:= \int _{S} \psi _{\alpha }^{\mathrm{tor}} \Psi _{\mathit{II}}^{\alpha 3} dS = \int _{S} C_{\mathit{ijkl}} \Psi _{\mathit{II}}^{ij} \Psi _{I}^{kl} dS, $$
(107)
$$ A_{34}:= \int _{S} \Psi _{I}^{33} dS = \int _{S} C_{\mathit{ijkl}} \Psi _{I}^{ij} \Psi _{\mathit{II}}^{kl} dS. $$
(108)

Using the symmetry of the elasticity tensor (\(C_{\mathit{ijkl}} = C_{\mathit{klij}} \)), we obtain \(A_{34} = A_{43}\). Following the same demonstration, it can be shown that the matrix \(\boldsymbol{A}\) can be expressed as follows:

$$ \boldsymbol{A}= \int _{S} C_{\mathit{ijkl}} \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \Psi _{I}^{ij} \Psi _{I}^{kl} & \Psi _{I}^{ij} \Psi _{\mathit{II}}^{kl} & \Psi _{I}^{ij} \Psi _{\mathit{III}}^{kl} & \Psi _{I}^{ij} \Psi _{\mathit{IV}}^{kl}\\ & \Psi _{\mathit{II}}^{ij} \Psi _{\mathit{II}}^{kl} & \Psi _{\mathit{II}}^{ij} \Psi _{\mathit{III}}^{kl} & \Psi _{\mathit{II}}^{ij} \Psi _{\mathit{IV}}^{kl}\\ & & \Psi _{\mathit{III}}^{ij} \Psi _{\mathit{III}}^{kl} & \Psi _{\mathit{III}}^{ij} \Psi _{\mathit{IV}}^{kl}\\ & \mathrm{sym} & & \Psi _{\mathit{IV}}^{ij} \Psi _{\mathit{IV}}^{kl} \end{array}\displaystyle \right ] dS. $$
(109)

To prove the definite positiveness of \(\boldsymbol{A}\), let us consider an arbitrary vector \(\boldsymbol{r}^{T} = \left \{ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} r_{1} & r_{2} & r_{3} & r_{4} \end{array} \right \} \neq \boldsymbol{0}\) and show that \(\boldsymbol{r}^{T} \boldsymbol{Ar}> 0\). The scalar \(\boldsymbol{r}^{T} \boldsymbol{Ar}\) is expressed as followed:

$$ \boldsymbol{r}^{T} \boldsymbol{Ar}= \boldsymbol{r}^{T} \left ( \int _{S} C_{\mathit{ijkl}} \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \Psi _{I}^{ij} \Psi _{I}^{kl} & \Psi _{I}^{ij} \Psi _{\mathit{II}}^{kl} & \Psi _{I}^{ij} \Psi _{\mathit{III}}^{kl} & \Psi _{I}^{ij} \Psi _{\mathit{IV}}^{kl}\\ & \Psi _{\mathit{II}}^{ij} \Psi _{\mathit{II}}^{kl} & \Psi _{\mathit{II}}^{ij} \Psi _{\mathit{III}}^{kl} & \Psi _{\mathit{II}}^{ij} \Psi _{\mathit{IV}}^{kl}\\ & & \Psi _{\mathit{III}}^{ij} \Psi _{\mathit{III}}^{kl} & \Psi _{\mathit{III}}^{ij} \Psi _{\mathit{IV}}^{kl}\\ [4pt] & \mathrm{sym} & & \Psi _{\mathit{IV}}^{ij} \Psi _{\mathit{IV}}^{kl} \end{array}\displaystyle \right ] dS \right ) \boldsymbol{r}, $$
(110)
$$ \boldsymbol{r}^{T} \boldsymbol{Ar}= \int _{S} C_{\mathit{ijkl}} \boldsymbol{r}^{T} \left \{ \textstyle\begin{array}{c} \Psi _{I}^{ij}\\ \Psi _{\mathit{II}}^{ij}\\ \Psi _{\mathit{III}}^{ij}\\ \Psi _{\mathit{IV}}^{ij} \end{array}\displaystyle \right \} \left \{ \textstyle\begin{array}{c} \Psi _{I}^{kl}\\ \Psi _{\mathit{II}}^{kl}\\ \Psi _{\mathit{III}}^{kl}\\ \Psi _{\mathit{IV}}^{kl} \end{array}\displaystyle \right \} ^{T} \boldsymbol{r} dS. $$
(111)

By noting \(s^{ij}:= \boldsymbol{r}^{T} \left \{ \begin{array}{c} \Psi _{I}^{ij}\\ \Psi _{\mathit{II}}^{ij}\\ \Psi _{\mathit{III}}^{ij}\\ \Psi _{\mathit{IV}}^{ij} \end{array} \right \} \), we obtain:

$$ \boldsymbol{r}^{T} \boldsymbol{Ar}= \int _{S} C_{\mathit{ijkl}} s^{ij} s^{kl} dS > 0, $$
(112)

which concludes the demonstration.

Appendix 2

To prove the equation in (67): \(T_{(0)}^{\alpha } = \int _{S} \sigma _{(0)}^{\alpha 3} dS =0\), it is necessary to prove that for all the four stress modes \(\boldsymbol{\Psi }_{I,\dots ,\mathit{IV}}\) describing \(\boldsymbol{\sigma }_{(0)}\) in (62), we have:

$$ \int _{S} \Psi _{I,\dots ,\mathit{IV}}^{\alpha 3} dS =0. $$
(113)

The equation above will be proven only for the first stress mode, the same demonstration can be used for the others. To this aim, let us write the variational problem leading to \(\boldsymbol{\Psi }_{I}\):

$$ \int _{S} C_{\mathit{ijkl}} \Psi _{I}^{ij} \delta \sigma ^{kl} dS - \int _{S} \Psi _{I}^{i\alpha } \delta u_{i,\alpha } dS - \int _{S} \phi _{i,\alpha }^{I} \delta \sigma ^{i\alpha } dS = \int _{S} \psi _{\alpha }^{\mathrm{tor}} \delta \sigma ^{3\alpha }\, dS. $$
(114)

By choosing \(\delta \boldsymbol{\sigma } =\boldsymbol{0}\) and \(\left ( \delta u_{1}, \delta u_{2}, \delta u_{3} \right ) = \left ( 0,0, X^{\alpha } \right )\), it is straightforward from the above equation that \(\int _{S} \Phi _{I}^{\alpha 3} \, dS =0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferradi, MK. The Saint-Venant Solution of a 3D Tapered Beam. J Elast 148, 1–25 (2022). https://doi.org/10.1007/s10659-021-09877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09877-x

Keywords

Mathematics Subject Classification

Navigation