Skip to main content
Log in

Analysis of the Tilted Shallow Wedge Problem in Couple-Stress Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The present work examines the problem of the tilted shallow wedge problem in the context of the generalized continuum theory of couple stress elasticity. The solution methodology is based on singular integral equations which resulted from the treatment of the mixed boundary value problem via integral transforms and generalized functions. The results suggest an extension of the work of Shackfield et al. (Eur. J. Mech. A, Solids 24(6):919–928, 2005), within the context of classical elasticity and the effects of the material microstructural characteristics upon the macroscopic and the local response are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sackfield, A., Dini, D., Hills, D.A.: The tilted shallow wedge problem. Eur. J. Mech. A, Solids 24(6), 919–928 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Fischer-Cripps, A.C.: Nanoindentation. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  ADS  Google Scholar 

  4. Mason, J.K., Lund, A.C., Schuh, C.A.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73(5), 054102 (2006)

    Article  ADS  Google Scholar 

  5. Maier, V., Merle, B., Goken, M., Durst, K.: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28(9), 1177–1188 (2013)

    Article  ADS  Google Scholar 

  6. Shi, C., Zhao, H., Huang, H., Xu, L., Ren, L., Bai, M., Li, J., Hu, X.: Effects of indenter tilt on nanoindentation results of fused silica: an investigation by finite element analysis. Mater. Trans. 54(6), 958–963 (2013)

    Article  Google Scholar 

  7. Xu, Z-H., Li, X.: Effect of sample tilt on nanoindentation behaviour of materials. Philos. Mag. 87(16), 2299–2312 (2007)

    Article  ADS  Google Scholar 

  8. Kashani, M.S., Madhavan, V.: Analysis and correction of the effect of sample tilt on results of nanoindentation. Acta Mater. 59(3), 883–895 (2011)

    Article  ADS  Google Scholar 

  9. Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50(4), 681–694 (2002)

    Article  ADS  MATH  Google Scholar 

  10. Zisis, Th., Gourgiotis, P.A., Baxevanakis, K.P., Georgiadis, H.G.: Some basic contact problems in couple stress elasticity. Int. J. Solids Struct. 51, 2084–2095 (2014)

    Article  Google Scholar 

  11. Zisis, Th., Gourgiotis, P.A., Dal Corso, F.: A contact problem in couple stress thermoelasticity. The indentation by a hot flat punch. Int. J. Solids Struct. 63, 226–239 (2015)

    Article  Google Scholar 

  12. Gourgiotis, P.A., Zisis, Th., Baxevanakis, K.P.: Analysis of the tilted flat punch in couple-stress elasticity. Int. J. Solids Struct. 85, 34–43 (2016)

    Article  Google Scholar 

  13. Karuriya, A.N., Bhandakkar, T.K.: Plane strain indentation on finite thickness bonded layer in couple stress elasticity. Int. J. Solids Struct. 108, 275–288 (2017)

    Article  Google Scholar 

  14. Song, H.X., Ke, L.L., Wang, Y.S.: Sliding frictional contact analysis of an elastic solid with couple stresses. Int. J. Mech. Sci. 133, 804–816 (2017)

    Article  Google Scholar 

  15. Wang, Y., Shen, H., Zhang, X., Zhang, B., Liu, J., Li, X.: Semi-analytical study of microscopic two-dimensional partial slip problem within the framework of couple stress elasticity: cylindrical indenter. Int. J. Solids Struct. 138, 76–86 (2018)

    Article  Google Scholar 

  16. Gourgiotis, P.A., Zisis, Th., Giannakopoulos, A.E., Georgiadis, H.G.: The Hertz contact problem in couple-stress elasticity. Int. J. Solids Struct. 168, 228–237 (2019)

    Article  Google Scholar 

  17. Wang, Y., Zhang, X., Shen, H., Liu, J., Zhang, B., Xu, S.: Three-dimensional contact analysis with couple stress elasticity. Int. J. Mech. Sci. 153, 369–379 (2019)

    Article  Google Scholar 

  18. Li, P., Liu, T-J.: The two-dimensional adhesive contact problem in the theory of couple stress elasticity. J. Adhes. Sci. Technol. 34(10), 1062–1082 (2020)

    Google Scholar 

  19. Fathabadi, S.A.A., Alinia, Y.: A nano-scale frictional contact problem incorporating the size dependency and the surface effects. Appl. Math. Model. 83, 107–121 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Y., Zhang, X., Shen, H., Liu, J., Zhang, B.: Couple stress-based 3D contact of elastic films. Int. J. Solids Struct. 191–192, 449–463 (2020)

    Article  Google Scholar 

  21. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18(2), 115–126 (1970)

    Article  ADS  Google Scholar 

  22. Hills, D.A., Nowell, D., Sackfield, A.: Mechanics of Elastic Contacts. Butterworth - Heinemann, Oxford (1993)

    MATH  Google Scholar 

  23. Giannakopoulos, A.E., Larsson, P.-L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31(19), 2679–2708 (1994)

    Article  MATH  Google Scholar 

  24. Larsson, P.-L., Giannakopoulos, A.E., Söderlund, E., Rowcliffe, D.J., Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33(2), 221–248 (1996)

    Article  MATH  Google Scholar 

  25. Giannakopoulos, A.E., Zisis, Th.: Analysis of Knoop indentation. Int. J. Solids Struct. 48(1), 175–190 (2011)

    Article  MATH  Google Scholar 

  26. Zisis, Th., Giannakopoulos, A.E.: Analysis of Knoop indentation strain hardening effects. Int. J. Solids Struct. 48(22–23), 3217–3231 (2011)

    Article  MATH  Google Scholar 

  27. Giannakopoulos, A.E., Zisis, Th.: Analysis of Knoop indentation of cohesive frictional materials. Mech. Mater. 57, 53–74 (2013)

    Article  Google Scholar 

  28. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. K. Ned. Akad. Wet., Ser. B, Phys. Sci. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Muki, R., Sternberg, E.: The influence of couple-stresses on singular stress concentrations in elastic solids. Z. Angew. Math. Phys. 16, 611–648 (1965)

    Article  MathSciNet  Google Scholar 

  31. Gourgiotis, P.A., Bigoni, D.: Stress channelling in extreme couple-stress materials part I: strong ellipticity, wave propagation, ellipticity, and discontinuity relations. J. Mech. Phys. Solids 88, 150–168 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gourgiotis, P.A., Bigoni, D.: Stress channelling in extreme couple-stress materials part II: localized folding vs faulting of a continuum in single and cross geometries. J. Mech. Phys. Solids 88, 169–185 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Gourgiotis, P.A., Piccolroaz, A.: Steady-state propagation of a mode II crack in couple stress elasticity. Int. J. Fract. 188(2), 119–145 (2014)

    Article  Google Scholar 

  34. Gourgiotis, P.A., Bigoni, D.: The dynamics of folding instability in a constrained Cosserat medium. Philos. Trans. R. Soc. Lond. A 375(2093), 20160159 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Mishuris, G., Piccolroaz, A., Radi, E.: Steady-state propagation of a mode III crack in couple stress elastic materials. Int. J. Eng. Sci. 61, 112–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  37. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bacca, M., Bigoni, D., Dal Corso, F., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase cauchy-elastic composites. Part I: closed form expression for the effective higher-order constitutive tensor. Int. J. Solids Struct. 50(24), 4010–4019 (2013)

    Article  Google Scholar 

  39. Rizzi, G., Dal Corso, F., Veber, D., Bigoni, D.: Identification of second-gradient elastic materials from planar hexagonal lattices. Part I: analytical derivation of equivalent constitutive tensors. Int. J. Solids Struct. 176, 1–18 (2019)

    Article  Google Scholar 

  40. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  41. Shu, J.Y., Fleck, N.A.: The prediction of a size effect in microindentation. Int. J. Solids Struct. 35(13), 1363–1383 (1998)

    Article  MATH  Google Scholar 

  42. Lewandowski-Szewczyk, M.J., Stupkiewicz, S.: Non-standard contact conditions in generalized continua: microblock contact model for a cosserat body. Int. J. Solids Struct. 202, 881–894 (2020)

    Article  Google Scholar 

  43. Erdogan, F.: Mixed boundary value problems in mechanics. In: Nemat-Nasser (ed.) Mechanics Today, vol. 4, pp. 1–81 (1978)

    Google Scholar 

  44. Gourgiotis, P.A., Georgiadis, H.G.: Distributed dislocation approach for cracks in couple-stress elasticity: shear modes. Int. J. Fract. 147, 83–102 (2007)

    Article  MATH  Google Scholar 

  45. Gourgiotis, P.A., Georgiadis, H.G.: An approach based on distributed dislocations and disclinations for crack problems in couple-stress elasticity. Int. J. Solids Struct. 45, 5521–5539 (2008)

    Article  MATH  Google Scholar 

  46. Gourgiotis, P.A.: Interaction of shear cracks in microstructured materials modeled by couple-stress elasticity. J. Mech. Mater. Struct. 13(3), 401–419 (2018)

    Article  MathSciNet  Google Scholar 

  47. Muskhelishvili, N.I.: Singular Integral Equations: Boundary Problems of Functions Theory and Their Application to Mathematical Physics. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  48. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of singular integral equations. In: Methods of Analysis and Solutions of Crack Problems. Mechanics of Fracture, vol. 1, pp. 368–425. Springer, Dordrecht (1973)

    Chapter  Google Scholar 

  49. Ioakimidis, N.I.: A method for the numerical solution of singular integral equations with logarithmic singularities. Int. J. Comput. Math. 9(4), 363–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. de Borst, R.: A generalisation of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103(3), 347–362 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zisis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolopoulos, S., Gourgiotis, P.A. & Zisis, T. Analysis of the Tilted Shallow Wedge Problem in Couple-Stress Elasticity. J Elast 144, 205–221 (2021). https://doi.org/10.1007/s10659-021-09844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09844-6

Keywords

Mathematics Subject Classification

Navigation