Skip to main content
Log in

Nonlinear Propagation of Coupled First- and Second-Sound Waves in Thermoelastic Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We study coupled nonlinear first- and second-sound propagation along equilibrium and nonequilibrium states of a thermoelastic system undergoing small perturbations. We apply a nonlinear constitutive equation for the Cauchy stress and a nonlinear heat-transport equation ruling the evolution of the heat flux. Both of them account for relaxational and nonlinear effects, as well as for the coupling between strain tensor and heat flux. The speeds of thermomechanical waves are obtained, and we show that they depend on whether the waves are travelling along, or against, a superimposed constant heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The form in Eq. (6) of the Cauchy stress tensor is a direct consequence of thermodynamic restrictions. We refer the readers to the Appendix at the end of the paper for them.

References

  1. Nowacki, W.: Thermoelasticity, 2nd edn. Pergamon, Oxford (1986)

    MATH  Google Scholar 

  2. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford Science Publications, Oxford (2010)

    MATH  Google Scholar 

  3. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    ADS  MATH  Google Scholar 

  4. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    MATH  Google Scholar 

  5. Öncü, T.S., Moodie, T.B.: On the propagation of thermoelastic waves in temperature rate-dependent materials. J. Elast. 29, 263–281 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Achenbach, J.D.: The influence of heat conduction on propagating stress jumps. J. Mech. Phys. Solids 16, 272–282 (1968)

    ADS  Google Scholar 

  7. Zhang, D.Q., Zhou, J.X., Chen, T.: Heat transfer and stress evolution behaviours of an aluminium alloy low pressure shell casting. IOP Conf. Ser., Mater. Sci. Eng. 84, 012041 (2015)

    Google Scholar 

  8. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)

    ADS  MATH  Google Scholar 

  11. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, fourth revised edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  12. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, New York (2014)

    Google Scholar 

  13. Guo, Y., Wang, M.: Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015)

    ADS  MathSciNet  Google Scholar 

  14. Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems. SEMA-SIMAI Springer Series, vol. 6. Springer, Berlin (2016)

    MATH  Google Scholar 

  15. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    ADS  MATH  Google Scholar 

  16. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  17. Atkin, R.J., Fox, N., Vasey, M.W.: A continuum approach to the second sound effect. J. Elast. 5, 237–248 (1975)

    Google Scholar 

  18. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–209 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Dascalu, C., Maugin, G.A.: The thermoelastic material-momentum equation. J. Elast. 39, 201–212 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Sawatzky, R.P., Moodie, T.B.: On thermoelastic transients in a general theory of heat conduction with finite wave speeds. Acta Mech. 56, 165–187 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Sharma, J.N., Singh, H.: Generalized thermoelastic waves in anisotropic media. J. Acoust. Soc. Am. 85, 1407–1413 (1989)

    ADS  Google Scholar 

  22. Mizuno, H., Mossa, S., Barrat, J.-L.: Relation of vibrational excitations and thermal conductivity to elastic heterogeneities in disordered solids. Phys. Rev. B 94, 144303 (2016)

    ADS  Google Scholar 

  23. Wang, X., Xu, X.: Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107–114 (2001)

    ADS  Google Scholar 

  24. Ding, X., Salje, E.K.H.: Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials. AIP Adv. 5, 053604 (2015)

    ADS  Google Scholar 

  25. Sellitto, A., Cimmelli, V.A.: Heat pulse propagation in thermoelastic systems: application to graphene. Acta Mech. 230(1), 121–136 (2019)

    MathSciNet  Google Scholar 

  26. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (2009)

    ADS  Google Scholar 

  27. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)

    ADS  MATH  Google Scholar 

  28. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (2010)

    ADS  Google Scholar 

  29. Yao, W.-J., Cao, B.-Y.: Triggering wave-domain heat conduction in graphene. Phys. Lett. A 380, 2105–2110 (2016)

    ADS  Google Scholar 

  30. Unnikrishnan, V.U., Unnikrishnan, G.U., Reddy, J.N.: Multiscale nonlocal thermo-elastic analysis of graphene nanoribbons. J. Therm. Stresses 32, 1087–1100 (2009)

    Google Scholar 

  31. Jackson, H.E., Walker, C.T.: Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys. Rev. B 3, 1428–1439 (1971)

    ADS  Google Scholar 

  32. Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Casas-Vázquez, J., Jou, D.: Temperature in nonequilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66, 1937–2023 (2003)

    ADS  Google Scholar 

  34. Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41, 319–332 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  36. Jou, D., Carlomagno, I., Cimmelli, V.A.: A thermodynamic model for heat transport and thermal wave propagation in graded systems. Physica E 73, 242–249 (2015)

    ADS  Google Scholar 

  37. Jou, D., Carlomagno, I., Cimmelli, V.A.: Rectification of low-frequency thermal waves in graded \({S}i_{c}{G}e_{1-c}\). Phys. Lett. A 380, 1824–1829 (2016)

    ADS  Google Scholar 

  38. Fan, D., Sigg, H., Spolenak, R., Ekinci, Y.: Strain and thermal conductivity in ultrathin suspended silicon nanowires. Phys. Rev. B 96, 115307 (2017)

    ADS  Google Scholar 

  39. Alam, M.T., Manoharan, M.P., Haque, M.A., Muratore, C., Voevodin, A.: Influence of strain on thermal conductivity of silicon nitride thin films. J. Micromech. Microeng. 22, 045001 (2012)

    ADS  Google Scholar 

  40. Apalak, M.K., Demirbas, M.D.: Thermal stress analysis of in-plane two-directional functionally graded plates subjected to in-plane edge heat fluxes. Proc. Inst. Mech. Eng. Part. L, J. Mater. Des. Appl., 232, 693–716 (2016)

    Google Scholar 

  41. Lee, H.-F., Kumar, S., Haque, M.A.: Role of mechanical strain on thermal conductivity of nanoscale aluminum films. Acta Mater. 58, 6619–6627 (2010)

    Google Scholar 

  42. Bhowmick, S., Shenoy, V.B.: Effect of strain on the thermal conductivity of solids. J. Chem. Phys. 125, 164513 (2006)

    ADS  Google Scholar 

  43. Li, X., Maute, K., Dunn, M.L., Yang, R.: Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)

    ADS  Google Scholar 

  44. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    MathSciNet  MATH  Google Scholar 

  45. Morro, A.: Evolution equations for non-simple viscoelastic solids. J. Elast. 105, 93–105 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work performed under the auspices of the Italian National Group of Mathematical Physics (GNFM-INdAM) which supported the present research by means of “Progetto Giovani 2018/Heat-pulse propagation in FGMs”

A. Sellitto acknowledges the University of Salerno for the financial supports under grant no. 300395FRB18SELLI and grant “Fondo per il finanziamento iniziale dell’attività di ricerca”.

V.A. Cimmelli acknowledges the financial support of the University of Basilicata under grants Ricerca Autonoma 2012, RIL 2013 and RIL 2015.

D. Jou acknowledges the financial support of Ministerio de Economía y Competitividad of the Spanish Government under grant TEC2015-67462-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Cimmelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Thermodynamic Compatibility

Appendix: Thermodynamic Compatibility

According to the entropy principle [32], the constitutive equations for the specific internal energy and for the Cauchy stress tensor have to be postulated in such a way that any solution of the system of differential equations in Eqs. (3a)–(4) represents an admissible thermodynamic process, namely, a process which is in accordance with second law of thermodynamics [5, 16, 17, 44, 45].

In continuum thermodynamics such a law is analyzed by considering the local balance of entropy

$$ \varrho \dot{s}+J_{i,i}^{ (s )}=\varrho \sigma ^{ (s )}, $$
(47)

wherein \(s\) is the specific entropy, and \(J_{i}^{ (s )}\) and \(\sigma ^{ (s )}\) are, respectively, the specific-entropy flux and production. In fact, second law of thermodynamics imposes that \(\sigma ^{ (s )}\) is non-negative along any admissible thermodynamic process [32, 44]. This implies nontrivial consequences on the constitutive equation for \(T_{ij}\), leading to the form given in Eq. (6). Here we prove that Eq. (6) is true by applying the classical Coleman-Noll procedure for the exploitation of the entropy inequality [44]. To this end we observe that, under the constitutive assumption

$$ J_{i}^{ (s )}=\frac{q_{i}}{\theta }, $$
(48)

from Eq. (47) we have

$$ 0\leq \varrho \dot{s}-\frac{q_{i}\theta _{,i}}{\theta ^{2}}+\frac{q_{i, {i}}}{\theta }. $$
(49)

If the Helmholtz free energy \(\psi =e-s\theta \) is introduced into the inequality above, and use of Eqs. (3b) and (4) is made, we get

$$\begin{aligned} 0 \leq& \varrho (\dot{e}-\dot{\psi }-s\dot{\theta } )+q _{i,{i}}- \frac{q_{i}\theta _{,i}}{\theta } \\ =&-\varrho \dot{\psi }-\varrho s\dot{\theta }+T_{ij} \dot{E}_{ij}+\frac{ \tau _{q}}{\kappa \theta } (1+a_{\tau }E_{hk}E_{hk} )q_{i} \dot{q}_{i}+ \frac{q_{i}q_{i}}{\kappa \theta }- \frac{2\tau _{q}}{ \varrho c_{v}\kappa \theta ^{2}}q_{j}q_{j,{i}}q_{i} \\ &{}- \frac{\tau _{E}}{ \kappa \theta }q_{j}\dot{E}_{ij}q_{i}. \end{aligned}$$
(50)

Theorem 6

The inequality (50) is satisfied whatever the thermodynamic process is if, and only if, the following thermodynamic restrictions hold

$$\begin{aligned} &\frac{\partial \psi }{\partial \theta }=-s, \end{aligned}$$
(51a)
$$\begin{aligned} &\frac{\partial \psi }{\partial \theta _{,_{i}}}=0, \end{aligned}$$
(51b)
$$\begin{aligned} &\frac{\partial \psi }{\partial q_{i}}=\frac{\tau _{q}}{\varrho \kappa \theta } (1+a_{\tau }E_{hk}E_{hk} )q_{i}, \end{aligned}$$
(51c)
$$\begin{aligned} &\frac{\partial \psi }{\partial q_{i,_{j}}}=0, \end{aligned}$$
(51d)
$$\begin{aligned} &\frac{\partial \psi }{\partial E_{ij}}=\frac{T_{ij}}{\varrho }-\frac{ \tau _{E}}{\varrho \kappa \theta }q_{i}q_{j}, \end{aligned}$$
(51e)
$$\begin{aligned} &\frac{q_{i}q_{j}}{\kappa \theta } \biggl(\delta _{ij}-\frac{2\tau _{q}}{ \varrho c_{v}\theta }q_{i,j} \biggr)\geq 0. \end{aligned}$$
(51f)

Proof

Indeed, once account is taken of the thermodynamic variables spanning the state space \(\Sigma \), the inequality (50) can be put in the following form

$$\begin{aligned} 0\leq\; &-\varrho \biggl(\frac{\partial \psi }{\partial \theta }+s \biggr) \dot{\theta }+ \biggl[ \frac{\tau _{q}}{\kappa \theta } (1++a_{ \tau }E_{hk}E_{hk} )q_{i}-\varrho \frac{\partial \psi }{\partial q_{i}} \biggr]\dot{q}_{i}+ \frac{q_{i}q_{i}}{\kappa \theta } \\ &{}-\frac{2\tau _{q}}{\varrho c_{v}\kappa \theta ^{2}}q_{j}q_{j,{i}}q _{i}+ \biggl(T_{ij}-\varrho \frac{\partial \psi }{\partial E_{ij}}-\frac{ \tau _{E}}{\kappa \theta }q_{i}q_{j} \biggr)\dot{E}_{ij}- \varrho \frac{ \partial \psi }{\partial \theta _{,i}}\dot{\theta }_{,i}-\varrho \frac{ \partial \psi }{\partial q_{i,_{j}}}\dot{q}_{i,{j}}. \end{aligned}$$
(52)

This inequality is linear in the time derivatives of the elements of the state space \(\dot{\theta }\), \(\dot{q}_{i}\), \(\dot{E}_{ij}\)\(\dot{\theta }_{,i}\) and \(\dot{q}_{i,{j}}\). Moreover, it is evident that in any point of the body and at every instant of time, those derivatives are independent of the elements of the state space and, due to the arbitrariness of the thermodynamic process, they can assume completely arbitrary values. Hence, since their coefficients in the entropy inequality (52) are defined on the state space, the time derivatives \(\dot{\theta }\), \(\dot{q}_{i}\), \(\dot{E}_{ij}\)\(\dot{\theta }_{,i}\) and \(\dot{q}_{i,{j}}\) and their coefficients are completely independent, and their product can assume an arbitrary sign. Thus, the entropy inequality is always satisfied if, and only if, all the coefficients of those time derivatives vanish [44]. As a consequence, the conditions (51a)–(51f) are necessary and sufficient for the fulfillment of inequality (52) along arbitrary thermodynamic processes. □

Remark 5

Once Eqs. (51a)–(51e) are fulfilled, inequality (52) reduces to (51f), namely,

$$ \biggl( \frac{q_{i}}{\kappa \theta }- \frac{2\tau _{q}}{\varrho c_{v}\kappa \theta ^{2}}q_{j}q_{j,{i}} \biggr)q _{i}\ge 0, $$

which represents an unilateral differential constraint defined on \(\Sigma \). Observing that the functions \({q}_{i}\) and \(q_{j,{i}}\) belong to the state space, the reduced entropy inequality above requires that the following matrix

$$ q_{i,j}- \biggl(\frac{\varrho c_{v}\theta }{2\tau _{q}} \biggr)\delta _{ij}, $$
(53)

has to be negative semidefinite on \(\Sigma \).

At this point, we firstly observe that the restrictions above do not impose any constraint on the internal energy. Hence, nothing prevents to assume that the linear relation \(e=c_{v}\theta \) holds. Under such hypothesis our last task is to derive by the restrictions above a suitable constitutive equation for the Cauchy stress tensor and, in such a way, to close the system (3a)–(4). From Eqs. (51b) and (51d) directly follows the relation

$$ \psi =\psi (\theta ;q_{i};E_{ij} ). $$
(54)

The coupling of Eqs. (51d) and (54), instead, yields

$$ \psi =\psi _{0} (\theta ;E_{ij} )+\frac{\tau _{q}}{2\varrho \kappa \theta } (1+a_{\tau }E_{hk}E_{hk} )q_{i}q_{i}. $$
(55)

Finally, if the classical assumption of thermoelasticity

$$ \varrho \frac{\partial \psi _{0}}{\partial E_{ij}}= (\lambda E _{kk}-b\theta )\delta _{ij}+2\mu E_{ij} $$
(56)

is used, then from Eq. (51e) we get the constitutive equation (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellitto, A., Cimmelli, V.A. & Jou, D. Nonlinear Propagation of Coupled First- and Second-Sound Waves in Thermoelastic Solids. J Elast 138, 93–109 (2020). https://doi.org/10.1007/s10659-019-09733-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09733-z

Keywords

Mathematics Subject Classification

Navigation