Skip to main content
Log in

Geometric Variational Principles for Computational Homogenization

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The homogenization of periodic elastic composites is addressed through the reformulation of the local equations of the mechanical problem in a geometric functional setting. This relies on the definition of Hilbert spaces of kinematically and statically admissible tensor fields, whose orthogonality and duality properties are recalled. These are endowed with specific energetic scalar products that make use of a reference and uniform elasticity tensor. The corresponding strain and stress Green’s operators are introduced and interpreted as orthogonal projection operators in the admissibility spaces. In this context and as an alternative to classical minimum energy principles, two geometric variational principles are investigated with the introduction of functionals that aim at measuring the discrepancy of arbitrary test fields to the kinematic, static or material admissibility conditions of the problem. By relaxing the corresponding local equations, this study aims in particular at laying the groundwork for the homogenization of composites whose constitutive properties are only partially known or uncertain. The local fields in the composite and their macroscopic responses are computed through the minimization of the proposed geometric functionals. To do so, their gradients are computed using the Green’s operators and gradient-based optimization schemes are discussed. A FFT-based implementation of these schemes is proposed and they are assessed numerically on a canonical example for which analytical solutions are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  Google Scholar 

  2. Bonnet, M., Constantinescu, A.: Inverse problems in elasticity. Inverse Probl. 21(2), R1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  4. Brisard, S., Dormieux, L.: FFT-based methods for the mechanics of composites: a general variational framework. Comput. Mater. Sci. 49(3), 663–671 (2010)

    Article  Google Scholar 

  5. Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6, 41–47 (1999)

    Article  ADS  Google Scholar 

  6. Gélébart, L., Mondon-Cancel, R.: Non linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput. Mater. Sci. 77, 430–439 (2013)

    Article  Google Scholar 

  7. Kabel, M., Böhlke, T., Schneider, M.: Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput. Mech. 54, 1497–1514 (2014)

    Article  MathSciNet  Google Scholar 

  8. Khatchaturyan, A.G.: Theory of Structural Transformations in Solids. Wiley, New York (1983)

    Google Scholar 

  9. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kröner, E.: Statistical Continuum Mechanics. Springer, Berlin (1971)

    Book  Google Scholar 

  11. Ladeveze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ladevèze, P., Pelle, J.P.: Mastering Calculations in Linear and Nonlinear Mechanics. Springer, New York (2005)

    MATH  Google Scholar 

  13. Michel, J., Moulinec, H., Suquet, P.: A computational method for linear and nonlinear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52, 139–160 (2001)

    Article  Google Scholar 

  14. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  15. Monchiet, V., Bonnet, G.: A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int. J. Numer. Methods Eng. 89(11), 1419–1436 (2012)

    Article  MathSciNet  Google Scholar 

  16. Moreau, J.J.: Duality characterization of strain tensor distributions in an arbitrary open set. J. Math. Anal. Appl. 72(2), 760–770 (1979)

    Article  MathSciNet  Google Scholar 

  17. Moulinec, H., Silva, F.: Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials. Int. J. Numer. Methods Eng. 97(13), 960–985 (2014)

    Article  MathSciNet  Google Scholar 

  18. Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. Paris II 318, 1417–1423 (1994)

    MATH  Google Scholar 

  19. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. Moulinec, H., Suquet, P., Milton, G.W.: Convergence of iterative methods based on Neumann series for composite materials: theory and practice. Int. J. Numer. Methods Eng. 114, 1103–1130 (2018). https://doi.org/10.1002/nme.5777

    Article  MathSciNet  Google Scholar 

  21. Müller, W.: Mathematical versus experimental stress analysis of inhomogeneities in solids. J. Phys. IV 6(C1), C1-139–C1-148 (1996)

    Google Scholar 

  22. Mura, T.: Micromechanics of Defects in Solids. Springer, Berlin (1987)

    Book  Google Scholar 

  23. Nouy, A., Soize, C.: Random field representations for stochastic elliptic boundary value problems and statistical inverse problems. Eur. J. Appl. Math. 25(3), 339–373 (2014)

    Article  MathSciNet  Google Scholar 

  24. Obnosov, Y.V.: Periodic heterogeneous structures: new explicit solutions and effective characteristics of refraction of an imposed field. SIAM J. Appl. Math. 59(4), 1267–1287 (1999)

    Article  MathSciNet  Google Scholar 

  25. Paris, L.: Etude de la régularité d’un champ de vitesses à partir de son tenseur deformation. In: Séminaire d’Analyse Convexe, Montpellier, 6(12) (1976)

  26. Schneider, M.: An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems. Comput. Methods Appl. Mech. Eng. 315, 846–866 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Staber, B., Guilleminot, J.: Stochastic modeling and generation of random fields of elasticity tensors: a unified information-theoretic approach. C. R., Méc. 345(6), 399–416 (2017)

    Article  ADS  Google Scholar 

  28. Suquet, P.: Plasticité et Homogénéisation. Thèse d’État, Université Pierre et Marie Curie, Paris 6 (1982)

  29. Suquet, P.: Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds.) Homogenization Techniques for Composite Media, vol. 272, pp. 193–278. Springer, Berlin (1987)

    Chapter  Google Scholar 

  30. Willis, J.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25(3), 185–202 (1977)

    Article  ADS  Google Scholar 

  31. Willis, J.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zeman, J., Vondr̆ejc, J., Novák, J., Marek, I.: Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J. Comput. Phys. 229, 8065–8071 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Fruitful discussions with H. Moulinec and J.-C. Michel are gratefully acknowledged. The Authors have received funding from Excellence Initiative of Aix-Marseille University - A*MIDEX, a French “Investissements d’Avenir” program in the framework of the Labex MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Bellis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Mathematical Definitions

1.1 A.1 Periodic Fields

Consider a unit-cell \(\mathcal{V}\) allowing to fill the space \(\mathbb{R}^{d}\) by translation along \(d\) vectors \({\boldsymbol{Y}}_{1}, \dots, {\boldsymbol{Y}}_{d}\). The lattice ℛ generated by these vectors is defined as

$$ \mathcal{R} = \Biggl\{ {\boldsymbol{Y}},\; {\boldsymbol{Y}} = \sum _{j=1}^{d} n_{j} {\boldsymbol{Y}}_{j}, \; n_{j} \in\mathbb{Z} \Biggr\} . $$

Define spaces of periodic scalar functions, vector fields and tensor fields as:

1.2 A.2 Fourier Transforms

The Fourier transform \(\hat{f}\) of \(f\) is defined as:

$$ \hat{f}({\boldsymbol{\xi}}) = \mathscr{F}[f]({\boldsymbol{\xi}}) = \frac{1}{| \mathcal{V}|} \int_{\mathcal{V}} f( {\boldsymbol{x}} ) e^{-\mathrm{i} {\boldsymbol{\xi}} \cdot{\boldsymbol{x}}} \,\text{d} { \boldsymbol{x}},\quad\text{where } \mathrm{i} = \sqrt{-1}. $$

Let \(\mathcal{R}^{*}\) denote the reciprocal lattice of ℛ generated by the vectors

$$ {\boldsymbol{Y}}^{*}_{i} = \frac{2 \pi}{|\mathcal{V}|} { \boldsymbol{Y}}_{j} \wedge {\boldsymbol{Y}}_{k}, $$

where \((i,j,k)\) is a direct circular permutation. Then, according to Plancherel’s theorem:

$$ \frac{1}{|\mathcal{V}|} \int_{\mathcal{V}} \bigl|f({\boldsymbol{x}}) \bigr|^{2} \ d { \boldsymbol{x}} = \sum_{{\boldsymbol{\xi}} \in\mathcal{R}^{*}} |\hat{f}( {\boldsymbol{ \xi}}) |^{2}, $$

and therefore

$$ f \in L^{2}_{\text{per}}\! (\mathcal{V} ) \quad \Leftrightarrow \quad\sum_{{\boldsymbol{\xi}} \in\mathcal{R}^{*}} \bigl|\hat{f}({\boldsymbol{\xi}})\bigr|^{2} < + \infty. $$

The original periodic function \(f \) in \(L^{2}_{\text{per}}\! (\mathcal{V} )\) can be reconstructed from its Fourier transform by

$$ f({\boldsymbol{x}}) = \mathscr{F}^{-1}[\hat{f}]({\boldsymbol{x}}) = \sum_{{\boldsymbol{\xi}} \in\mathcal{R}^{*}} \hat{f}({\boldsymbol{\xi}}) e^{ \mathrm{i} {\boldsymbol{\xi}} \cdot{\boldsymbol{x}}}. $$

Appendix B: Properties of the Green’s Operators

Lemma 3

The strain Green’s operator\({\boldsymbol{\varGamma}}_{0}\)satisfies the following properties:

  1. 1.

    \({\boldsymbol{\varGamma}}_{0}\)satisfies the reciprocity identity:

    (65)
  2. 2.

    The kernel of\({\boldsymbol{\varGamma}}_{0}\)coincides with the subspace:

    (66)
  3. 3.

    \({\boldsymbol{\varGamma}}_{0}\)is such that:

    $$ {\boldsymbol{\varGamma}}_{0} {\boldsymbol{L}}_{0} { \boldsymbol{\varGamma}}_{0} = {\boldsymbol{\varGamma}} _{0}. $$
    (67)

Properties (66) and (67) were proved in [13]. The additional property (65) derives from the identity

(68)

To prove (68), note that, by definition of \({\boldsymbol{\varGamma}} _{0}\), a stress field \({\boldsymbol{s}}={\boldsymbol{L}}_{0} {\boldsymbol{\varGamma}}_{0}{\boldsymbol {\tau}}- {\boldsymbol{\tau}}\) in can be associated with \({\boldsymbol{\tau}}\) through (17). By Lemma 1:

which, according to the definition (9) of the Riesz mapping, proves (68). Note that similar properties can be proved for the stress Green’s operator \({\boldsymbol{\Delta}}_{0}\) owing to the duality principle, see [14].

Remark 6

If one defines the Green’s operator from , endowed with the standard \(L^{2}\)-scalar product, into itself then the reciprocity identity (65) amounts in the self-adjointness of \({\boldsymbol{\varGamma}}_{0}\), a property which is known since [10].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellis, C., Suquet, P. Geometric Variational Principles for Computational Homogenization. J Elast 137, 119–149 (2019). https://doi.org/10.1007/s10659-018-09713-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-09713-9

Keywords

Mathematics Subject Classification

Navigation