Skip to main content
Log in

Quadratic Invariants of the Elasticity Tensor

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We study the quadratic invariants of the elasticity tensor in the framework of its unique irreducible decomposition. The key point is that this decomposition generates the direct sum reduction of the elasticity tensor space. The corresponding subspaces are completely independent and even orthogonal relative to the Euclidean (Frobenius) scalar product. We construct a basis set of seven quadratic invariants that emerge in a natural and systematic way. Moreover, the completeness of this basis and the independence of the basis tensors follow immediately from the direct sum representation of the elasticity tensor space. We define the Cauchy factor of an anisotropic material as a dimensionless measure of a closeness to a pure Cauchy material and a similar isotropic factor is as a measure for a closeness of an anisotropic material to its isotropic prototype. For cubic crystals, these factors are explicitly displayed and cubic crystal average of an arbitrary elastic material is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmad, F.: Invariants and structural invariants of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 55(4), 597–606 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alshits, V.I., Lothe, J.: Some basic properties of bulk elastic waves in anisotropic media. Wave Motion 40, 297–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auffray, N., Kolev, B., Petitot, M.: On anisotropic polynomial relations for the elasticity tensor. J. Elast. 115, 77–103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8, 633–671 (1970)

    Article  ADS  Google Scholar 

  5. Baerheim, R.: Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46, 391–418 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math. 57, 583–598 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries versus wavefront symmetries. Q. J. Mech. Appl. Math. 60, 73–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bucataru, I., Slawinski, M.A.: Invariant properties for finding distance in space of elasticity tensors. J. Elast. 94(2), 97–114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campanella, A., Tonon, M.L.: A note on the Cauchy relations. Meccanica 29, 105–108 (1994)

    Article  MATH  Google Scholar 

  10. Cowin, S.C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42, 249–266 (1989). Corrigenda ibid. 46, 541–542 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40, 1459–1471 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cowin, S.C., Mehrabadi, M.M.: Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48(5), 247–285 (1995)

    Article  ADS  MATH  Google Scholar 

  13. Fedorov, F.I.: Theory of Elastic Waves in Crystals. Springer, Berlin (2013)

    Google Scholar 

  14. Forte, S., Vianello, M.: Functional bases for transversely isotropic and transversely hemitropic invariants of elasticity tensors. Q. J. Mech. Appl. Math. 51(4), 543–552 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Forte, S., Vianello, M.: A unified approach to invariants of plane elasticity tensors. Meccanica 49(9), 2001–2012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Francois, M., Geymonat, G., Berthaud, Y.: Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements. Int. J. Solids Struct. 35(31), 4091–4106 (1998)

    Article  MATH  Google Scholar 

  18. Gazis, D.C., Tadjbakhsh, I., Toupin, R.A.: The elastic tensor of given symmetry nearest to an anisotropic elastic tensor. Acta Crystallogr. 16(9), 917–922 (1963)

    Article  MathSciNet  Google Scholar 

  19. Haussühl, S.: Physical Properties of Crystals: An Introduction. VCH, Weinheim (2007)

    Book  Google Scholar 

  20. Hehl, F.W., Itin, Y.: The Cauchy relations in linear elasticity theory. J. Elast. 66, 185–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Itin, Y., Hehl, F.W.: The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation. J. Math. Phys. 54, 042903 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Itin, Y., Hehl, F.W.: Irreducible decompositions of the elasticity tensor under the linear and orthogonal groups and their physical consequences. J. Phys. Conf. Ser. 597(1), 012046 (2015)

    Article  ADS  Google Scholar 

  23. Leibfried, G.: Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle. In: Kristallphysik, I., Flugge, S. (eds.) Handbuch der Physik, vol. VII/1, pp. 104–324. Springer, Berlin (1955)

    Google Scholar 

  24. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall International, Englewood Cliffs (1983)

    MATH  Google Scholar 

  25. Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast. 85(3), 215–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nayfeh, A.H.: Wave Propagation in Layered Anisotropic Media: With Applications to Composites. North-Holland, Amsterdam (1995)

    MATH  Google Scholar 

  27. Norris, A.N.: Quadratic invariants of elastic moduli. Q. J. Mech. Appl. Math. 60(3), 367–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Norris, A.N.: Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. J. Acoust. Soc. Am. 119(4), 2114–2121 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Podio-Guidugli, P.: A Primer in Elasticity. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  30. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  31. Surrel, Y.: A new description of the tensors of elasticity based upon irreducible representations. Eur. J. Mech. A, Solids 12, 219–235 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Ting, T.C.T.: Invariants of anisotropic elastic constants. Q. J. Mech. Appl. Math. 40, 431–448 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Weiner, J.H.: Statistical Mechanics of Elasticity. Dover, New York (2002)

    MATH  Google Scholar 

  34. Weyl, H.: The Classical Groups: Their Invariants and Representations, vol. 1. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  35. Xiao, H.: On anisotropic invariants of a symmetric tensor: crystal classes, quasi-crystal classes and others. Proc. R. Soc. Lond. Ser. A 454, 1217–1240 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank F.-W. Hehl (Cologne/Columbia, MO) and A. Norris (Rutgers) for most helpful discussion and remarks. My acknowledgments to the reviewers and the editors for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Itin.

Appendix: Calculating the relations between invariants

Appendix: Calculating the relations between invariants

1.1 A.1 The first Ting invariant

For the first invariant of Ting, we write

$$ B_{1}=C^{ijkl}C_{ijkl}=\sum _{I=1}^{5}{}^{(I)} C^{ijkl} \sum _{J=1}^{5}{}^{(J)} C_{ijkl} . $$
(148)

Due to the orthogonality of the decomposition, we are left with

$$ B_{1}={}^{(1)} S^{2}+{}^{(2)} S^{2}+{}^{(3)} S^{2}+ {}^{(1)} A^{2}+{}^{(2)} A^{2}. $$
(149)

We calculate step by step

$$\begin{aligned} {}^{(1)} S^{2} =&\frac{1}{225}S^{2} \bigl(g^{ij}g^{kl}+g^{ik}g^{jl}+g^{il}g^{jk} \bigr)^{2}=\frac{1}{5} S^{2}=\frac{1}{5}Z_{1} , \end{aligned}$$
(150)
$$\begin{aligned} {}^{(2)} S^{2} =&\frac{1}{49} \bigl(P^{ij}g^{kl}+P^{ik}g^{jl}+P^{il}g^{jk}+P^{jk}g^{il} +P^{jl}g^{ik}+P^{kl}g^{ij} \bigr)^{2}=\frac{6}{7} P^{ij}P_{ij} \\ =& \frac{6}{7}Z_{4} , \end{aligned}$$
(151)
$$\begin{aligned} {}^{(3)} S^{2} =&R^{ijkl}R_{ijkl}=Z_{7} , \end{aligned}$$
(152)

and

$$\begin{aligned} {}^{(1)} A^{2} =&\frac{1}{36}A^{2} \bigl(2g^{ij}g^{kl}-g^{il}g^{jk}-g^{ik}g^{jl} \bigr)^{2}=A^{2}=Z_{3}, \end{aligned}$$
(153)
$$\begin{aligned} {}^{(2)} A^{2} =&\frac{1}{4} \bigl( \epsilon^{ikm}\epsilon^{jln}+ \epsilon^{ilm} \epsilon^{jkn} \bigr) (\epsilon_{ikp}\epsilon_{jlq}+ \epsilon_{ilp}\epsilon_{jkq} )Q_{mn}Q^{pq}=12Q^{mn}Q_{mn} \\ =& 12Z_{6} . \end{aligned}$$
(154)

Consequently, the first invariant of Ting reads

$$ B_{1}=\frac{1}{5} Z_{1}+Z_{3}+ \frac{6}{7}Z_{4}+12Z_{6}+Z_{7} . $$
(155)

1.2 A.2 The second Ting invariant

For the second invariant of Ting, \(B_{2}\), we first calculate the trace

$$ C^{i}{}_{ikl}=g^{ij}C_{ijkl}=g^{ij} \bigl(S_{ijkl}+ {}^{(1)} A_{ijkl}+{}^{(2)} A_{ijkl} \bigr) . $$
(156)

Here,

$$\begin{aligned} g^{ij}S_{ijkl} =&S_{kl}=P_{kl}+ \frac{1}{3} Sg_{kl} , \end{aligned}$$
(157)
$$\begin{aligned} g^{ij}{}^{(1)} A_{ijkl} =&g^{ij} (g_{ik}Q_{jl}+g_{jk}Q_{il}+g_{il}Q_{jk}+ g_{jl}Q_{ik}-2g_{kl}Q_{ij}-2g_{ij}Q_{kl} ) \\ =& -2Q_{kl} , \end{aligned}$$
(158)

and

$$ g^{ij} {}^{(2)} A_{ijkl}= \frac{1}{6} Ag^{ij} (2g_{ij}g_{kl}-g_{il}g_{jk}-g_{ik}g_{jl} )=\frac{2}{3}Ag_{kl} . $$
(159)

Hence,

$$ C^{i}{}_{ikl}=P_{kl}-2Q_{kl} +\frac{1}{3} ( S+2A )g_{kl} . $$
(160)

Consequently, the second invariant of Ting reads

$$ B_{2}=C^{i}{}_{ikl}C_{j}{}^{jkl}=P_{kl}P^{kl}-4P_{kl}Q^{kl}+4Q_{kl}Q^{kl}+ \frac{1}{3} (S+2A )^{2} , $$
(161)

or

$$ B_{2}=\frac{1}{3}Z_{1} + \frac{4}{3}Z_{2}+\frac{4}{3}Z_{3} + Z_{4}-4Z_{5}+4Z_{6} . $$
(162)

1.3 A.3 The first Ahmad invariant

For the first invariant of Ahmad, \(B_{3}\), we need the trace

$$ C^{j}{}_{kjl}=g^{ij}C_{ikjl}=g^{ij} \bigl(S_{ikjl}+ {}^{(1)} A_{ikjl}+{}^{(2)} A_{ikjl} \bigr) . $$
(163)

Here,

$$\begin{aligned} g^{ij}S_{ikjl} =&S_{kl}=P_{kl}+ \frac{1}{3} Sg_{kl} , \end{aligned}$$
(164)
$$\begin{aligned} g^{ij} {}^{(1)} A_{ikjl} =& \frac{1}{6} Ag^{ij} (2g_{ik}g_{jl}-g_{il}g_{jk}-g_{ij}g_{kl} )=-\frac{1}{3}Ag_{kl} , \end{aligned}$$
(165)

and

$$\begin{aligned} g^{ij} {}^{(2)} A_{ikjl} =&g^{ij} (g_{ij}Q_{kl}+g_{jk}Q_{il}+g_{il}Q_{jk}+ g_{kl}Q_{ij}-2g_{jl}Q_{ik}-2g_{ik}Q_{jl} ) \\ =& Q_{kl} . \end{aligned}$$
(166)

Consequently,

$$ C^{j}{}_{kjl}=P_{kl}+Q_{kl}+ \frac{1}{3} g_{kl}(S-A) . $$
(167)

Hence using (160) and (167) we get

$$\begin{aligned} B_{3} =& \biggl(P_{kl}+Q_{kl}+ \frac{1}{3} g_{kl}(S-A) \biggr) \biggl(P^{kl}-2Q^{kl} +\frac{1}{3} ( S+2A )g^{kl} \biggr) \\ =&P_{kl}P^{kl}-P_{kl}Q^{kl}-2Q_{kl}Q^{kl}+ \frac{1}{3}(S+2A) (S-A) , \end{aligned}$$
(168)

or

$$ B_{3}=\frac{1}{3}Z_{1} + \frac{1}{3}Z_{2}-\frac{2}{3}Z_{3} + Z_{4}-Z_{5}-2Z_{6} . $$
(169)

1.4 A.4 The second Ahmad invariant

This invariant is obtained by the use of the formula (167),

$$\begin{aligned} B_{3} =& \biggl(P^{kl}+Q^{kl}+ \frac{1}{3} g^{kl}(S-A) \biggr) \biggl(P_{kl}+Q_{kl}+ \frac{1}{3} g_{kl}(S-A) \biggr) \\ =&P_{kl}P^{kl}+2P_{kl}Q^{kl}+Q_{kl}Q^{kl}+ \frac{1}{3}(S-A)^{2} , \end{aligned}$$
(170)

or

$$ B_{4}=\frac{1}{3}Z_{1} - \frac{2}{3}Z_{2}+\frac{1}{3}Z_{3} + Z_{4}+2Z_{5}+Z_{6} . $$
(171)

1.5 A.5 The Norris invariant

We put the invariant of Norris first in the form

$$ B_{5}=C^{ijkl}C_{ikjl}= \bigl(S^{ijkl}+A^{ijkl} \bigr) (S_{ikjl}+A_{ikjl} )= S^{ijkl}S_{ijkl}+A^{ijkl}A_{ikjl} . $$
(172)

Using (150,151,152), we have

$$ S^{ijkl}S_{ikjl}=S^{ijkl}S_{ijkl}= \frac{1}{5} Z_{1}+\frac{6}{7} Z_{4}+Z_{7} . $$
(173)

We observe

$$\begin{aligned} A^{ijkl}A_{ikjl} =& \bigl({}^{(1)} A^{ijkl}+{}^{(2)} A^{ijkl} \bigr) \bigl({}^{(1)} A_{ikjl}+{}^{(2)} A_{ikjl} \bigr) \\ =&{}^{(1)} A_{ijkl} {}^{(1)} A^{ikjl}+{}^{(2)} A_{ijkl} {}^{(2)} A^{ikjl} . \end{aligned}$$
(174)

Thus we find

$$\begin{aligned} {}^{(1)} A_{ijkl} {}^{(1)} A^{ikjl} =&\frac{1}{36}A^{2} (2g_{ij}g_{kl}-g_{il}g_{jk}-g_{ik}g_{jl} ) \bigl(2g^{ik}g^{jl}-g^{il}g^{jk}-g^{ij}g^{kl} \bigr) \\ =&-\frac{1}{2}A^{2} , \end{aligned}$$
(175)
$$\begin{aligned} {}^{(2)} A_{ijkl} {}^{(2)} A^{ikjl} =& (g_{ik}Q_{jl}+g_{jk}Q_{il}+g_{il}Q_{jk}+ g_{jl}Q_{ik}-2g_{kl}Q_{ij}-2g_{ij}Q_{kl} ) \\ &{}\times\bigl(g^{ij}Q^{kl}+g^{jk}Q^{il}+g^{il}Q^{jk}+ g^{kl}Q^{ij}-2g^{jl}Q^{ik}-2g^{ik}Q^{jl} \bigr) \\ =&-6Q_{ij}Q^{ij} . \end{aligned}$$
(176)

Consequently,

$$ B_{5}=C^{ijkl}C_{ikjl}= \frac{1}{5} Z_{1}-\frac{1}{2}Z_{3}+ \frac{6}{7} Z_{4} -6Z_{6}+Z_{7} . $$
(177)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itin, Y. Quadratic Invariants of the Elasticity Tensor. J Elast 125, 39–62 (2016). https://doi.org/10.1007/s10659-016-9569-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9569-2

Keywords

Mathematics Subject Classification

Navigation