Skip to main content
Log in

Multi-field Response of Anisotropic Magneto-Electro-Elastic Materials at a Rigid Conducting Cylinder

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Contact problem of anisotropic magneto-electro-elastic materials indented by a perfectly conducting cylindrical punch is investigated based on a complete coupling theory. The 12 cases of the distinctive eigenvalue distribution of the related governing equations are detailed. For 3 available eigenvalue distribution cases involving semi-infinite anisotropic magneto-electro-elastic materials, real fundamental solutions are provided. A system of singular integral equations is obtained and solved exactly. The explicit expressions for the coupled magneto-electro-elastic fields in the half-plane are presented in the form of elementary functions. Figures are plotted to show the effects of various parameters, such as the volume fraction of the piezoelectric phase, on the contact behaviors. In-depth analyses are given to explain how the various parameters cause the contact properties to change and develop. Connections between the present study and practical application are presented. This article may greatly benefit the experimental and numerical test involving magneto-electro-elastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 16424–16427 (1995)

    Article  ADS  Google Scholar 

  2. Bhangale, R.K., Ganesan, N.: Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct. 43, 3230–3253 (2006)

    Article  MATH  Google Scholar 

  3. Borrelli, A., Horgan, C.O., Patria, M.C.: Saint–Venant end effects for plane deformations of linear piezoelectric solids. Int. J. Solids Struct. 43, 943–956 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Challagulla, K.S., Georgiades, A.V.: Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures. Int. J. Eng. Sci. 49, 85–104 (2011)

    Article  Google Scholar 

  5. Chen, W.Q., Lee, K.Y.: Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. Int. J. Solids Struct. 40, 5689–5705 (2003)

    Article  MATH  Google Scholar 

  6. Chen, W.Q., Lee, K.Y., Ding, H.J.: On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. J. Sound Vib. 279, 237–251 (2005)

    Article  ADS  Google Scholar 

  7. Chen, W.Q., Pan, E., Wang, H.M., Zhang, Ch.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58, 1524–1551 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)

    Article  Google Scholar 

  9. Giannakopoulos, A.E., Parmaklis, A.Z.: The contact problem of a circular rigid punch on piezomagnetic materials. Int. J. Solids Struct. 44, 4593–4612 (2007)

    Article  MATH  Google Scholar 

  10. Harshe, G., Dougherty, J.P., Newnham, R.E.: Theoretical modeling of multiplayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4, 145–159 (1993)

    Google Scholar 

  11. Javelined, M., Harshe, G.: Magneto-electric effect in piezoelectric/magneto strictive multiplayer (2-2) composites. J. Intell. Mater. Syst. Struct. 5, 501–513 (1994)

    Article  Google Scholar 

  12. Lee, J.S., Jiang, L.Z.: Exact electroelastic analysis of piezoelectric laminate via state space approach. Int. J. Solids Struct. 33, 977–990 (1996)

    Article  MATH  Google Scholar 

  13. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  ADS  Google Scholar 

  14. Nie, G.J., Zhong, Z.: Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges. Compos. Struct. 84, 167–176 (2008)

    Article  Google Scholar 

  15. Pan, E.: Exact solution for simply supported and multilayered magneto-electroelastic plates. J. Appl. Mech. 68, 608–618 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Pan, E.: Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Z. Angew. Math. Phys. 53, 815–838 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, X., Shen, Y.P.: The general solution of three-dimensional problem in magneto-electro-elastic media. Int. J. Eng. Sci. 40, 1069–1080 (2002)

    Article  MATH  Google Scholar 

  18. Wu, T.L., Huang, J.H.: Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int. J. Solids Struct. 37, 2981–3009 (2000)

    Article  MATH  Google Scholar 

  19. Zhao, L., Chen, W.Q.: Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework. Compos. Struct. 92, 1753–1761 (2010)

    Article  Google Scholar 

  20. Zhou, Y.T., Lee, K.Y.: Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part I: closed-form solutions. Int. J. Solids Struct. 49, 3853–3865 (2012)

    Article  Google Scholar 

  21. Zhou, Y.T., Lee, K.Y.: Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part II: numerical results. Int. J. Solids Struct. 49, 3866–3882 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Won Kim.

Appendix

Appendix

1. Expressions of the known functions \(\varLambda_{mj}^{(S)}(\omega,z)\) (m=0,…,3,j=1,…,5), \(\varLambda_{nj}^{(E)}(\omega,z)\) (n=0,1,j=1,…,5) and \(\varLambda_{nj}^{(M)}(\omega,z)\) (n=0,1,j=1,…,5) appearing in Eqs. (66)–(68)

For Case (i)

$$ \begin{aligned} \varLambda_{m1}^{(S)}(\omega,z) &= \bigl[ \varGamma_{m}^{(S)} ( \eta_{1} )\cos (\omega \sigma_{1}z) - \Delta_{m}^{(S)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{m2}^{(S)}(\omega,z) &= \bigl[ \Delta_{m}^{(S)} ( \eta_{1} )\cos (\omega \sigma_{1}z) + \varGamma_{m}^{(S)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{m3}^{(S)}( \omega,z) &= \bigl[ \varGamma_{m}^{(S)} ( \eta_{3} )\cos (\omega \sigma_{3}z) - \Delta_{m}^{(S)} ( \eta_{3} )\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ \varLambda_{m4}^{(S)}(\omega,z) &= \bigl[ \Delta_{m}^{(S)} ( \eta_{3} )\cos (\omega \sigma_{3}z) + \varGamma_{m}^{(S)} ( \eta_{3} )\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ \varLambda_{m5}^{(S)}( \omega,z) &= \varPi_{m}^{(S)} ( o_{5} )e^{\omega o_{5}z},\quad m = 0, \ldots,3, \end{aligned} $$
(102)
$$\begin{aligned} & \begin{aligned} \varLambda_{n1}^{(E)}( \omega,z) &= \bigl[ \varGamma_{n}^{(E)} ( \eta_{1} ) \cos (\omega \sigma_{1}z) - \Delta_{n}^{(E)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{n2}^{(E)}(\omega,z) &= \bigl[ \Delta_{n}^{(E)} ( \eta_{1} )\cos (\omega \sigma_{1}z) + \varGamma_{n}^{(E)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{n3}^{(E)}( \omega,z) &= \bigl[ \varGamma_{n}^{(E)} ( \eta_{3} ) \cos (\omega \sigma_{3}z) - \Delta_{n}^{(E)} ( \eta_{3} )\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ \varLambda_{n}^{(E)}(\omega,z) &= \bigl[ \Delta_{n}^{(E)} ( \eta_{3} )\cos (\omega \sigma_{3}z) + \varGamma_{n}^{(E)} ( \eta_{3} )\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ \varLambda_{n5}^{(E)}( \omega,z) &= \varPi_{n}^{(E)} ( o_{5} )e^{\omega o_{5}z},\quad n = 0,1, \end{aligned} \end{aligned}$$
(103)
$$\begin{aligned} & \begin{aligned} \varLambda_{n1}^{(M)}(\omega,z) &= \bigl[ \varGamma_{n}^{(M)} ( \eta_{1} )\cos (\omega \sigma_{1}z) - \Delta_{n}^{(M)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{n2}^{(M)}(\omega,z) &= \bigl[ \Delta_{n}^{(M)} ( \eta_{1} )\cos (\omega \sigma_{1}z) + \varGamma_{n}^{(M)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{n3}^{(M)}( \omega,z) &= \bigl[ \varGamma_{n}^{(M)} ( \eta_{3} ) \cos (\omega \sigma_{3}z) - \Delta_{n}^{(M)} ( \eta_{3} )\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ \varLambda_{n}^{(M)}(\omega,z) &= \bigl[ \Delta_{n}^{(M)} ( \eta_{3} )\cos (\omega \sigma_{3}z) + \varGamma_{n}^{(M)} ( \eta_{3} )\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ \varLambda_{n5}^{(M)}( \omega,z) &= \varPi_{n}^{(M)} ( o_{5} )e^{\omega o_{5}z},\quad n = 0,1, \end{aligned} \end{aligned}$$
(104)

where known functions \(\varGamma_{m}^{(S)} ( \cdot )\), \(\Delta_{m}^{(S)} ( \cdot )\), \(\varPi_{m}^{(S)}\), \(\varGamma_{n}^{(E)} ( \cdot )\), \(\Delta_{n}^{(E)} ( \cdot )\), \(\varPi_{n}^{(E)}\), \(\varGamma_{n}^{(M)} ( \cdot )\), \(\Delta_{n}^{(M)} ( \cdot )\) and \(\varPi_{n}^{(M)}\) are given as

$$\begin{aligned} &\begin{aligned} \varGamma_{0}^{(S)} ( \eta ) &= c_{11} + c_{16}g_{1}(\eta ) + c_{13} \bigl[ \operatorname{Re} ( \eta )g_{2} ( \eta ) - \operatorname{Im} ( \eta )h_{2} ( \eta ) \bigr] \\ &\quad {} + e_{31} \bigl[ \operatorname{Re} ( \eta )g_{3} ( \eta ) - \operatorname{Im} ( \eta )h_{3} ( \eta ) \bigr] + h_{31} \bigl[ \operatorname{Re} ( \eta )g_{4} ( \eta ) - \operatorname{Im} ( \eta )h_{4} ( \eta ) \bigr], \\ \Delta_{0}^{(S)} ( \eta )&= c_{16}h_{1} ( \eta ) + c_{13} \bigl[ \operatorname{Re} ( \eta )h_{2} ( \eta ) + \operatorname{Im} ( \eta )g_{2} ( \eta ) \bigr] \\ &\quad {} + e_{31} \bigl[ \operatorname{Re} ( \eta )h_{3} ( \eta ) + \operatorname{Im} ( \eta )g_{3} ( \eta ) \bigr] + h_{31} \bigl[ \operatorname{Re} ( \eta )h_{4} ( \eta ) + \operatorname{Im} ( \eta )g_{4} ( \eta ) \bigr], \\ \varPi_{0}^{(S)} ( \eta )&= c_{11} + c_{16}f_{1}(\eta ) + c_{13}\eta f_{2}( \eta ) + e_{31}\eta f_{3}(\eta ) + h_{31}\eta f_{4}(\eta ), \end{aligned} \end{aligned}$$
(105)
$$\begin{aligned} &\begin{aligned} \varGamma_{1}^{(S)} ( \eta ) &= c_{13} + c_{36}g_{1}(\eta ) + c_{33} \bigl[ \operatorname{Re} ( \eta )g_{2} ( \eta ) - \operatorname{Im} ( \eta )h_{2} ( \eta ) \bigr] \\ &\quad {} + e_{33} \bigl[ \operatorname{Re} ( \eta )g_{3} ( \eta ) - \operatorname{Im} ( \eta )h_{3} ( \eta ) \bigr] \\ &\quad {} + h_{33} \bigl[ \operatorname{Re} ( \eta )g_{4} ( \eta ) - \operatorname{Im} ( \eta )h_{4} ( \eta ) \bigr], \\ \Delta_{1}^{(S)} ( \eta ) &= c_{36}h_{1} ( \eta ) + c_{33} \bigl[ \operatorname{Re} ( \eta )h_{2} ( \eta ) + \operatorname{Im} ( \eta )g_{2} ( \eta ) \bigr] + e_{33} \bigl[ \operatorname{Re} ( \eta )h_{3} ( \eta ) + \operatorname{Im} ( \eta )g_{3} ( \eta ) \bigr] \\ &\quad {} + h_{33} \bigl[ \operatorname{Re} ( \eta )h_{4} ( \eta ) + \operatorname{Im} ( \eta )g_{4} ( \eta ) \bigr], \\ \varPi_{1}^{(S)} ( \eta ) &= c_{13} + c_{36}f_{1}(\eta ) + c_{33}\eta f_{2}( \eta ) + e_{33}\eta f_{3}(\eta ) + h_{33}\eta f_{4}(\eta ), \end{aligned} \end{aligned}$$
(106)
$$\begin{aligned} &\begin{aligned} \varGamma_{2}^{(S)} ( \eta ) &= c_{45} \bigl[ \operatorname{Re} ( \eta )g_{1} ( \eta ) - \operatorname{Im} ( \eta )h_{1} ( \eta ) \bigr] + c_{55} \bigl[ \operatorname{Re} ( \eta ) - g_{2} ( \eta ) \bigr] - e_{15}g_{3} ( \eta ) \\ &\quad {} - h_{15}g_{4} ( \eta ), \\ \Delta_{2}^{(S)} ( \eta ) &= c_{45} \bigl[ \operatorname{Im} ( \eta )g_{1} ( \eta ) + \operatorname{Re} ( \eta )h_{1} ( \eta ) \bigr] + c_{55} \bigl[ \operatorname{Im} ( \eta ) - h_{2} ( \eta ) \bigr] - e_{15}h_{3} ( \eta ) \\ &\quad {} - h_{15}h_{4} ( \eta ), \\ \varPi_{2}^{(S)} ( \eta ) &= c_{45}\eta f_{1} ( \eta ) + c_{55} \bigl[ \eta - f_{2} ( \eta ) \bigr] - e_{15}f_{3} ( \eta ) - h_{15}f_{4} ( \eta ), \end{aligned} \end{aligned}$$
(107)
$$\begin{aligned} &\begin{aligned} \varGamma_{3}^{(S)} ( \eta ) &= c_{44} \bigl[ \operatorname{Re} ( \eta )g_{1} ( \eta ) - \operatorname{Im} ( \eta )h_{1} ( \eta ) \bigr] + c_{45} \bigl[ \operatorname{Re} ( \eta ) - g_{2} ( \eta ) \bigr] - e_{14}g_{3} ( \eta ) \\ &\quad {} - h_{14}g_{4} ( \eta ), \\ \Delta_{3}^{(S)} ( \eta ) &= c_{44} \bigl[ \operatorname{Im} ( \eta )g_{1} ( \eta ) + \operatorname{Re} ( \eta )h_{1} ( \eta ) \bigr] + c_{45} \bigl[ \operatorname{Im} ( \eta ) - h_{2} ( \eta ) \bigr] - e_{14}h_{3} ( \eta ) \\ &\quad {} - h_{14}h_{4} ( \eta ), \\ \varPi_{3}^{(S)} ( \eta ) &= c_{44}\eta f_{1} ( \eta ) + c_{45} \bigl[ \eta - f_{2} ( \eta ) \bigr] - e_{14}f_{3} ( \eta ) - h_{14}f_{4} ( \eta ), \end{aligned} \end{aligned}$$
(108)
$$\begin{aligned} &\begin{aligned} \varGamma_{0}^{(E)} ( \eta ) &= e_{14} \bigl[ \operatorname{Re} ( \eta )g_{1} ( \eta ) - \operatorname{Im} ( \eta )h_{1} ( \eta ) \bigr] + e_{15} \bigl[ \operatorname{Re} ( \eta ) - g_{2} ( \eta ) \bigr] + \epsilon _{11}g_{3} ( \eta ) \\ &\quad {} + d_{11}g_{4} ( \eta ), \\ \Delta_{0}^{(E)} ( \eta ) &= e_{14} \bigl[ \operatorname{Im} ( \eta )g_{1} ( \eta ) + \operatorname{Re} ( \eta )h_{1} ( \eta ) \bigr] + e_{15} \bigl[ \operatorname{Im} ( \eta ) - h_{2} ( \eta ) \bigr] + \epsilon _{11}h_{3} ( \eta ) \\ &\quad {} + d_{11}h_{4} ( \eta ), \\ \varPi_{0}^{(E)} ( \eta ) &= e_{14}\eta f_{1} ( \eta ) + e_{15} \bigl[ \eta - f_{2} ( \eta ) \bigr] + \epsilon _{11}f_{3} ( \eta ) + d_{11}f_{4} ( \eta ), \end{aligned} \end{aligned}$$
(109)
$$\begin{aligned} &\begin{aligned} \varGamma_{1}^{(E)} ( \eta ) &= e_{31} + e_{36}g_{1}(\eta ) + e_{33} \bigl[ \operatorname{Re} ( \eta )g_{2} ( \eta ) - \operatorname{Im} ( \eta )h_{2} ( \eta ) \bigr] \\ &\quad {} - \epsilon _{33} \bigl[ \operatorname{Re} ( \eta )g_{3} ( \eta ) - \operatorname{Im} ( \eta )h_{3} ( \eta ) \bigr] - d_{33} \bigl[ \operatorname{Re} ( \eta )g_{4} ( \eta ) - \operatorname{Im} ( \eta )h_{4} ( \eta ) \bigr], \\ \Delta_{1}^{(E)} ( \eta ) &=e_{36}h_{1} ( \eta ) + e_{33} \bigl[ \operatorname{Re} ( \eta )h_{2} ( \eta ) + \operatorname{Im} ( \eta )g_{2} ( \eta ) \bigr] \\ &\quad {} - \epsilon _{33} \bigl[ \operatorname{Re} ( \eta )h_{3} ( \eta ) + \operatorname{Im} ( \eta )g_{3} ( \eta ) \bigr] - d_{33} \bigl[ \operatorname{Re} ( \eta )h_{4} ( \eta ) + \operatorname{Im} ( \eta )g_{4} ( \eta ) \bigr], \\ \varPi_{1}^{(E)} ( \eta ) &= e_{31} + e_{36}f_{1}(\eta ) + e_{33}\eta f_{2}( \eta ) - \epsilon _{33}\eta f_{3}(\eta ) - d_{33}\eta f_{4}(\eta ), \end{aligned} \end{aligned}$$
(110)
$$\begin{aligned} &\begin{aligned} \varGamma_{0}^{(M)} ( \eta ) &= h_{14} \bigl[ \operatorname{Re} ( \eta )g_{1} ( \eta ) - \operatorname{Im} ( \eta )h_{1} ( \eta ) \bigr] + h_{15} \bigl[ \operatorname{Re} ( \eta ) - g_{2} ( \eta ) \bigr] + d_{11}g_{3} ( \eta ) \\ &\quad {} + \mu_{11}g_{4} ( \eta ), \\ \Delta_{0}^{(M)} ( \eta ) &= h_{14} \bigl[ \operatorname{Im} ( \eta )g_{1} ( \eta ) + \operatorname{Re} ( \eta )h_{1} ( \eta ) \bigr] + h_{15} \bigl[ \operatorname{Im} ( \eta ) - h_{2} ( \eta ) \bigr] + d_{11}h_{3} ( \eta ) \\ &\quad {} + \mu_{11}h_{4} ( \eta ), \\ \varPi_{0}^{(M)} ( \eta ) &= h_{14}\eta f_{1} ( \eta ) + h_{15} \bigl[ \eta - f_{2} ( \eta ) \bigr] + d_{11}f_{3} ( \eta ) + \mu_{11}f_{4} ( \eta ), \end{aligned} \end{aligned}$$
(111)
$$\begin{aligned} &\begin{aligned} \varGamma_{1}^{(M)} ( \eta ) &= h_{31} + h_{36}g_{1}(\eta ) + h_{33} \bigl[ \operatorname{Re} ( \eta )g_{2} ( \eta ) - \operatorname{Im} ( \eta )h_{2} ( \eta ) \bigr] \\ &\quad {} - d_{33} \bigl[ \operatorname{Re} ( \eta )g_{3} ( \eta ) - \operatorname{Im} ( \eta )h_{3} ( \eta ) \bigr] - \mu_{33} \bigl[ \operatorname{Re} ( \eta )g_{4} ( \eta ) - \operatorname{Im} ( \eta )h_{4} ( \eta ) \bigr], \\ \Delta_{1}^{(M)} ( \eta ) &= h_{36}h_{1} ( \eta ) + h_{33} \bigl[ \operatorname{Re} ( \eta )h_{2} ( \eta ) + \operatorname{Im} ( \eta )g_{2} ( \eta ) \bigr] \\ &\quad {} - d_{33} \bigl[ \operatorname{Re} ( \eta )h_{3} ( \eta ) + \operatorname{Im} ( \eta )g_{3} ( \eta ) \bigr] - \mu_{33} \bigl[ \operatorname{Re} ( \eta )h_{4} ( \eta ) + \operatorname{Im} ( \eta )g_{4} ( \eta ) \bigr], \\ \varPi_{1}^{(M)} ( \eta ) &= h_{31} + h_{36}f_{1}(\eta ) + h_{33}\eta f_{2}( \eta ) - d_{33}\eta f_{3}(\eta ) - \mu_{33}\eta f_{4}(\eta ). \end{aligned} \end{aligned}$$
(112)

For Case (ii)

$$\begin{aligned} & \begin{aligned} \varLambda_{m1}^{(S)}(\omega,z) &= \bigl[ \varGamma_{m}^{(S)} ( \eta_{1} )\cos (\omega \sigma_{1}z) - \Delta_{m}^{(S)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{m2}^{(S)}(\omega,z) &= \bigl[ \Delta_{m}^{(S)} ( \eta_{1} )\cos (\omega \sigma_{1}z) + \varGamma_{m}^{(S)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{mj}^{(S)}(\omega,z) &= \varPi_{m}^{(S)} ( o_{j} )e^{\omega o_{j}z},\quad m = 0, \ldots,3, j = 3,4,5, \end{aligned} \end{aligned}$$
(113)
$$\begin{aligned} & \begin{aligned} \varLambda_{n1}^{(E)}(\omega,z) &= \bigl[ \varGamma_{n}^{(E)} ( \eta_{1} ) \cos (\omega \sigma_{1}z) - \Delta_{n}^{(E)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{n2}^{(E)}(\omega,z) &= \bigl[ \Delta_{n}^{(E)} ( \eta_{1} )\cos (\omega \sigma_{1}z) + \varGamma_{n}^{(E)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{nj}^{(E)}(\omega,z) &= \varPi_{n}^{(E)} ( o_{j} )e^{\omega o_{j}z},\quad n = 0,1,\ j = 3,4,5, \end{aligned} \end{aligned}$$
(114)
$$\begin{aligned} & \begin{aligned} \varLambda_{n1}^{(M)}(\omega,z) &= \bigl[ \varGamma_{n}^{(M)} ( \eta_{1} ) \cos (\omega \sigma_{1}z) - \Delta_{n}^{(M)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{n2}^{(M)}(\omega,z) &= \bigl[ \Delta_{n}^{(M)} ( \eta_{1} )\cos (\omega \sigma_{1}z) + \varGamma_{n}^{(M)} ( \eta_{1} )\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ \varLambda_{nj}^{(M)}(\omega,z) &= \varPi_{n}^{(M)} ( o_{j} )e^{\omega o_{j}z},\quad n = 0,1,\ j = 3,4,5. \end{aligned} \end{aligned}$$
(115)

For Case (iii)

$$\begin{aligned} &\varLambda_{mj}^{(S)}(\omega,z) = \varPi_{m}^{(S)} ( o_{j} )e^{\omega o_{j}z},\quad m = 0, \ldots,3,\ j = 1, \ldots,5, \end{aligned}$$
(116)
$$\begin{aligned} &\varLambda_{nj}^{(E)}(\omega,z) = \varPi_{n}^{(E)} ( o_{j} )e^{\omega o_{j}z},\quad n = 0,1,\ j = 1, \ldots,5, \end{aligned}$$
(117)
$$\begin{aligned} & \varLambda_{nj}^{(M)}(\omega,z) = \varPi_{n}^{(M)} ( o_{j} )e^{\omega o_{j}z},\quad n = 0,1,\ j = 1, \ldots,5. \end{aligned}$$
(118)

In Case (ii) and Case (iii), known functions \(\varGamma_{m}^{(S)} ( \cdot )\), \(\Delta_{m}^{(S)} ( \cdot )\), \(\varPi_{m}^{(S)}\), \(\varGamma_{n}^{(E)} ( \cdot )\), \(\Delta_{n}^{(E)} ( \cdot )\), \(\varPi_{n}^{(E)}\), \(\varGamma_{n}^{(M)} ( \cdot )\), \(\Delta_{n}^{(M)} ( \cdot )\) and \(\varPi_{n}^{(M)}\) are the same forms as those given in Eqs. (105)–(112).

2. Expressions of the known functions T mj (ω,0) (m=1,2,3,j=0,…,5) appearing in Eqs. (75)–(77)

For Case (i)

$$\begin{aligned} \begin{aligned} &\mathrm{T}_{m1}(\omega,z) = \bigl[ g_{m + 1}( \eta_{1})\cos (\omega \sigma_{1}z) - h_{m + 1}( \eta_{1})\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ &\mathrm{T}_{m2}(\omega,z) = \bigl[ h_{m + 1}( \eta_{1})\cos (\omega \sigma_{1}z) + g_{m + 1}( \eta_{1})\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ &\mathrm{T}_{m3}(\omega,z) = \bigl[ g_{m + 1}( \eta_{3})\cos (\omega \sigma_{3}z) - h_{m + 1}( \eta_{3})\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ &\mathrm{T}_{m4}(\omega,z) = \bigl[ g_{m + 1}( \eta_{3})\cos (\omega \sigma_{3}z) - h_{m + 1}( \eta_{3})\sin (\omega \sigma_{3}z) \bigr]e^{\omega o_{3}z}, \\ &\mathrm{T}_{m5}(\omega,z) = f_{m + 1}(o_{5})e^{\omega o_{5}z}, \quad m = 1,2,3. \end{aligned} \end{aligned}$$
(119)

For Case (ii)

$$\begin{aligned} \begin{aligned} & \mathrm{T}_{m1}(\omega,z) = \bigl[ g_{m + 1}( \eta_{1})\cos (\omega \sigma_{1}z) - h_{m + 1}( \eta_{1})\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ &\mathrm{T}_{m2}(\omega,z) = \bigl[ h_{m + 1}( \eta_{1})\cos (\omega \sigma_{1}z) + g_{m + 1}( \eta_{1})\sin (\omega \sigma_{1}z) \bigr]e^{\omega o_{1}z}, \\ &\mathrm{T}_{mj}(\omega,z) = f_{m + 1}(o_{j})e^{\omega o_{j}z}, \quad m = 1,2,3, j = 3,4,5. \end{aligned} \end{aligned}$$
(120)

For Case (iii)

$$\begin{aligned} \mathrm{T}_{mj}(\omega,z) = f_{m + 1}(o_{j})e^{\omega o_{j}z}, \quad m = 1,2,3,\ j = 1, \ldots,5. \end{aligned}$$
(121)

3. Expressions of , and appearing in Eq. (93)

(122)

where

(123)

4. Expressions of \(\varOmega_{mj}^{(S)}\) and \(\varUpsilon_{mj}^{(S)}\) (m=0,…,3,j=1,…,5), \(\varOmega_{nj}^{(E)}\) and \(\varUpsilon_{nj}^{(E)}\) (n=0,1, j=1,…,5) and \(\varOmega_{nj}^{(M)}\) and \(\varUpsilon_{nj}^{(M)}\) (n=0,1,j=1,…,5) appearing in Eqs. (95)–(97)

$$\begin{aligned} \begin{aligned} &\mathrm{K}_{mj}^{(S)}(x,z) = \left\{ \begin{array}{l@{\quad }l} \varTheta_{mj}^{(S)}(x,z), & \mathrm{Case\ I} \\ \varUpsilon_{mj}^{(S)}(x,z), & \mathrm{Case\ II} \end{array} \right .,\quad (m = 0, \ldots,3,\ j = 1, \ldots,5), \\ & \mathrm{K}_{nj}^{(E)}(x,z) = \left\{ \begin{array}{l@{\quad }l} \varTheta_{nj}^{(E)}(x,z), & \mathrm{Case\ I} \\ \varUpsilon_{nj}^{(E)}(x,z), & \mathrm{Case\ II} \end{array} \right .,\quad (n = 0,1,\ j = 1, \ldots,5), \\ & \mathrm{K}_{nj}^{(M)}(x,z) = \left\{ \begin{array}{l@{\quad }l} \varTheta_{nj}^{(M)}(x,z), & \mathrm{Case\ I} \\ \varUpsilon_{nj}^{(M)}(x,z), & \mathrm{Case\ II} \end{array} \right .,\quad (n = 0,1,\ j = 1, \ldots,5), \end{aligned} \end{aligned}$$
(124)

where Case I denotes the expressions for \(\varOmega_{mj}^{(S)}\), \(\varOmega_{nj}^{(E)}\) and \(\varOmega_{nj}^{(M)}\) and Case II denotes the expressions for \(\varUpsilon_{mj}^{(S)}\), \(\varUpsilon_{nj}^{(E)}\) and \(\varUpsilon_{nj}^{(M)}\).

For Case (i)

$$\begin{aligned} &\begin{aligned} K_{m1}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{11}(x,z) - \Delta_{m}^{(S)} ( \eta_{1} )\chi_{12}(x,z) \bigr],\quad m = 0,1, \\ K_{m2}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{m}^{(S)} ( \eta_{1} )\chi_{11}(x,z) + \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{12}(x,z) \bigr],\quad m = 0,1, \\ K_{m3}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{m}^{(S)} ( \eta_{3} )\delta_{11}(x,z) - \Delta_{m}^{(S)} ( \eta_{3} )\delta_{12}(x,z) \bigr],\quad m = 0,1, \\ K_{m4}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{m}^{(S)} ( \eta_{3} )\delta_{11}(x,z) + \varGamma_{m}^{(S)} ( \eta_{3} ) \delta_{12}(x,z) \bigr],\quad m = 0,1, \\ K_{m5}^{(S)}(x,z) &= \varPi_{m}^{(S)} ( o_{5} )\tau_{15}(x,z),\quad m = 0,1, \\ K_{m1}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{21}(x,z) - \Delta_{m}^{(S)} ( \eta_{1} )\chi_{22}(x,z) \bigr],\quad m = 2,3, \\ K_{m2}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{m}^{(S)} ( \eta_{1} )\chi_{21}(x,z) + \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{22}(x,z) \bigr],\quad m = 2,3, \\ K_{m3}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{m}^{(S)} ( \eta_{3} )\delta_{21}(x,z) - \Delta_{m}^{(S)} ( \eta_{3} )\delta_{22}(x,z) \bigr],\quad m = 2,3, \\ K_{m4}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{m}^{(S)} ( \eta_{3} )\delta_{21}(x,z) + \varGamma_{m}^{(S)} ( \eta_{3} ) \delta_{22}(x,z) \bigr],\quad m = 2,3, \\ K_{m5}^{(S)}(x,z) &= \varPi_{m}^{(S)} ( o_{5} )\tau_{25}(x,z),\quad m = 2,3, \end{aligned} \end{aligned}$$
(125)
$$\begin{aligned} & \begin{aligned} K_{01}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{0}^{(E)} ( \eta_{1} ) \chi_{21}(x,z) - \Delta_{0}^{(E)} ( \eta_{1} )\chi_{22}(x,z) \bigr], \\ K_{02}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{0}^{(E)} ( \eta_{1} )\chi_{21}(x,z) + \varGamma_{0}^{(E)} ( \eta_{1} )\chi_{22}(x,z) \bigr], \\ K_{03}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{0}^{(E)} ( \eta_{3} )\delta_{21}(x,z) - \Delta_{0}^{(E)} ( \eta_{3} )\delta_{22}(x,z) \bigr], \\ K_{04}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{0}^{(E)} ( \eta_{3} )\delta_{21}(x,z) + \varGamma_{0}^{(E)} ( \eta_{3} )\delta_{22}(x,z) \bigr], \\ K_{05}^{(E)}(x,z) &= \varPi_{0}^{(E)} ( o_{5} )\tau_{25}(x,z), \\ K_{11}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{1}^{(E)} ( \eta_{1} ) \chi_{11}(x,z) - \Delta_{1}^{(E)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{12}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{1}^{(E)} ( \eta_{1} )\chi_{11}(x,z) + \varGamma_{1}^{(E)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{13}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{1}^{(E)} ( \eta_{3} )\delta_{11}(x,z) - \Delta_{1}^{(E)} ( \eta_{3} )\delta_{12}(x,z) \bigr], \\ K_{14}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{1}^{(E)} ( \eta_{3} )\delta_{11}(x,z) + \varGamma_{1}^{(E)} ( \eta_{3} )\delta_{12}(x,z) \bigr], \\ K_{15}^{(E)}(x,z) &= \varPi_{1}^{(E)} ( o_{5} )\tau_{15}(x,z), \end{aligned} \end{aligned}$$
(126)
$$\begin{aligned} &\begin{aligned} K_{01}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{0}^{(M)} ( \eta_{1} ) \chi_{21}(x,z) - \Delta_{0}^{(M)} ( \eta_{1} )\chi_{22}(x,z) \bigr], \\ K_{02}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{0}^{(M)} ( \eta_{1} )\chi_{21}(x,z) + \varGamma_{0}^{(M)} ( \eta_{1} )\chi_{22}(x,z) \bigr], \\ K_{03}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{0}^{(M)} ( \eta_{3} )\delta_{21}(x,z) - \Delta_{0}^{(M)} ( \eta_{3} )\delta_{22}(x,z) \bigr], \\ K_{04}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{0}^{(M)} ( \eta_{3} )\delta_{21}(x,z) + \varGamma_{0}^{(M)} ( \eta_{3} )\delta_{22}(x,z) \bigr], \\ K_{05}^{(M)}(x,z) &= \varPi_{0}^{(M)} ( o_{5} )\tau_{25}(x,z), \\ K_{11}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{1}^{(M)} ( \eta_{1} ) \chi_{11}(x,z) - \Delta_{1}^{(M)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{12}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{1}^{(M)} ( \eta_{1} )\chi_{11}(x,z) + \varGamma_{1}^{(M)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{13}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{1}^{(M)} ( \eta_{3} )\delta_{11}(x,z) - \Delta_{1}^{(M)} ( \eta_{3} )\delta_{12}(x,z) \bigr], \\ K_{14}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{1}^{(M)} ( \eta_{3} )\delta_{11}(x,z) + \varGamma_{1}^{(M)} ( \eta_{3} )\delta_{12}(x,z) \bigr], \\ K_{15}^{(M)}(x,z) &= \varPi_{1}^{(M)} ( o_{5} )\tau_{15}(x,z), \end{aligned} \end{aligned}$$
(127)

where χ nj (x,z) (n,j=1,2) are given as

$$\begin{aligned} \begin{aligned} &\chi_{1j}(x,z) = T_{j1}(x,z) + T_{j2}(x,z),\quad j = 1,2,\\ &\chi_{21}(x,z) = T_{21}(x,z) - T_{22}(x,z), \qquad \chi_{22}(x,z) = - T_{11}(x,z) + T_{12}(x,z), \end{aligned} \end{aligned}$$
(128)
$$\begin{aligned} &T_{1j}(x,z) = \left\{ \begin{array}{l@{\quad }l} \dfrac{\sqrt{\rho_{j2}^{2} - x_{Aj}^{2}}}{\rho_{j2}^{2} - \rho_{j1}^{2}}, & \mathrm{Case\ I} \\ \dfrac{\sqrt{\rho_{j2}^{2} - x_{Aj}^{2}} + o_{1}z}{a}, & \mathrm{Case\ II} \end{array} \right.,\quad j = 1,2, \\ & T_{2j}(x,z) = \left\{ \begin{array}{l@{\quad }l} \operatorname{sgn}(x_{Aj})\dfrac{\sqrt{x_{Aj}^{2} - \rho_{j1}^{2}}}{\rho_{j2}^{2} - \rho_{j1}^{2}}, & \mathrm{Case\ I} \\ \dfrac{x_{Aj} - \operatorname{sgn}(x_{Aj})\sqrt{x_{Aj}^{2} - \rho_{j1}^{2}}}{a}, & \mathrm{Case\ II} \end{array} \right .,\quad j = 1,2, \end{aligned}$$
(129)

where sgn(⋅) is the sign function and

$$\begin{aligned} &\rho_{11} = \frac{1}{2} \bigl( \sqrt{(x_{A1} + a)^{2} + (o_{1}z)^{2}} - \sqrt{(x_{A1} - a)^{2} + (o_{1}z)^{2}} \bigr), \end{aligned}$$
(130)
$$\begin{aligned} &\rho_{12} = \frac{1}{2} \bigl( \sqrt{(x_{A1} + a)^{2} + (o_{1}z)^{2}} + \sqrt{(x_{A1} - a)^{2} + (o_{1}z)^{2}} \bigr), \end{aligned}$$
(131)
$$\begin{aligned} &\rho_{21} = \frac{1}{2} \bigl( \sqrt{(x_{A2} + a)^{2} + (o_{1}z)^{2}} - \sqrt{(x_{A2} - a)^{2} + (o_{1}z)^{2}} \bigr), \end{aligned}$$
(132)
$$\begin{aligned} &\rho_{22} = \frac{1}{2} \bigl( \sqrt{(x_{A2} + a)^{2} + (o_{1}z)^{2}} + \sqrt{(x_{A2} - a)^{2} + (o_{1}z)^{2}} \bigr), \end{aligned}$$
(133)
$$\begin{aligned} &x_{A1} = \sigma_{1}z + x,\quad x_{A2} = \sigma_{1}z - x, \end{aligned}$$
(134)

and δ nj (x,z) (n,j=1,2) are given as

$$\begin{aligned} \begin{aligned} &\delta_{1j}(x,z) = \mathrm{H}_{j1}(x,z) + \mathrm{H}_{j2}(x,z),\quad j = 1,2, \\ &\delta_{21}(x,z) = \mathrm{H}_{21}(x,z) - \mathrm{H}_{22}(x,z), \qquad \delta_{22}(x,z) = - \mathrm{H}_{11}(x,z) + \mathrm{H}_{12}(x,z), \end{aligned} \end{aligned}$$
(135)
$$\begin{aligned} \begin{aligned} & H_{1j}(x,z) = \left \{ \begin{array}{l@{\quad }l} \dfrac{\sqrt{\gamma_{j2}^{2} - x_{Bj}^{2}}}{\gamma_{j2}^{2} - \gamma_{j1}^{2}}, & \mathrm{Case\ I} \\ \dfrac{\sqrt{\gamma_{j2}^{2} - x_{Bj}^{2}} + o_{3}z}{a}, & \mathrm{Case\ II} \end{array} \right.,\quad j = 1,2, \\ & H_{2j}(X,Z) = \left \{ \begin{array}{l@{\quad }l} {\mathop{\mathrm{sgn}}} (x_{Bj})\dfrac{\sqrt{x_{Bj}^{2} - \gamma_{j1}^{2}}}{\gamma_{j2}^{2} - \gamma_{j1}^{2}}, & \mathrm{Case\ I} \\ \dfrac{x_{Bj} - {\mathop{\mathrm{sgn}}} (x_{Bj})\sqrt{x_{Bj}^{2} - \gamma_{j1}^{2}}}{a}, & \mathrm{Case\ II} \end{array} \right .,\quad j = 1,2, \end{aligned} \end{aligned}$$
(136)

where

$$\begin{aligned} & \gamma_{11} = \frac{1}{2} \bigl( \sqrt{(x_{B1} + a)^{2} + (o_{3}z)^{2}} - \sqrt{(x_{B1} - a)^{2} + (o_{3}z)^{2}} \bigr), \end{aligned}$$
(137)
$$\begin{aligned} & \gamma_{12} = \frac{1}{2} \bigl( \sqrt{(x_{B1} + a)^{2} + (o_{3}z)^{2}} + \sqrt{(x_{B1} - a)^{2} + (o_{3}z)^{2}} \bigr), \end{aligned}$$
(138)
$$\begin{aligned} & \gamma_{21} = \frac{1}{2} \bigl( \sqrt{(x_{B2} + a)^{2} + (o_{3}z)^{2}} - \sqrt{(x_{B2} - a)^{2} + (o_{3}z)^{2}} \bigr), \end{aligned}$$
(139)
$$\begin{aligned} & \gamma_{22} = \frac{1}{2} \bigl( \sqrt{(x_{B2} + a)^{2} + (o_{3}Z)^{2}} + \sqrt{(x_{B2} - a)^{2} + (o_{3}Z)^{2}} \bigr), \end{aligned}$$
(140)
$$\begin{aligned} & x_{B1} = \sigma_{3}z + x, \quad x_{B2} = \sigma_{3}z - x. \end{aligned}$$
(141)

The functions τ nj (x,z) are

$$\begin{aligned} \begin{aligned} &\tau_{1j}(x,z) = \left \{ \begin{array}{l@{\quad }l} \dfrac{\sqrt{\lambda_{2j}^{2} - x^{2}}}{\lambda_{2j}^{2} - \lambda_{1j}^{2}}, & \mathrm{Case\ I} \\ \dfrac{\sqrt{\lambda_{2j}^{2} - x^{2}} + o_{j}z}{a}, & \mathrm{Case\ II} \end{array} \right., \\ & C_{2j}(X,Z) = \left\{ \begin{array}{l@{\quad }l} {\mathop{\mathrm{sgn}}} (X)\dfrac{\sqrt{X^{2} - \lambda_{1j}^{2}}}{\lambda_{2j}^{2} - \lambda_{1j}^{2}}, & \mathrm{Case\ I} \\ \dfrac{X - {\mathop{\mathrm{sgn}}} (X)\sqrt{X^{2} - \lambda_{1j}^{2}}}{a}, & \mathrm{Case\ II} \end{array} \right., \end{aligned} \end{aligned}$$
(142)
$$\begin{aligned} \begin{aligned} & \lambda_{1j} = \frac{1}{2} \bigl( \sqrt{(x + a)^{2} + (o_{j}z)^{2}} - \sqrt{(x - a)^{2} + (o_{j}z)^{2}} \bigr), \\ &\lambda_{2j} = \frac{1}{2} \bigl( \sqrt{(x + a)^{2} + (o_{j}z)^{2}} + \sqrt{(x - a)^{2} + (o_{j}z)^{2}} \bigr). \end{aligned} \end{aligned}$$
(143)

For Case (ii)

$$\begin{aligned} & \begin{aligned} K_{m1}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{11}(x,z) - \Delta_{m}^{(S)} ( \eta_{1} )\chi_{12}(x,z) \bigr],\quad m = 0,1, \\ K_{m2}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{m}^{(S)} ( \eta_{1} )\chi_{11}(x,z) + \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{12}(x,z) \bigr],\quad m = 0,1, \\ K_{mj}^{(S)}(x,z) &= \varPi_{m}^{(S)} ( o_{j} )\tau_{1j}(x,z),\quad m = 0,1,\ j = 3,4,5, \\ K_{m1}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{21}(x,z) - \Delta_{m}^{(S)} ( \eta_{1} )\chi_{22}(x,z) \bigr],\quad m = 2,3, \\ K_{m2}^{(S)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{m}^{(S)} ( \eta_{1} )\chi_{21}(x,z) + \varGamma_{m}^{(S)} ( \eta_{1} ) \chi_{22}(x,z) \bigr],\quad m = 2,3, \\ K_{mj}^{(S)}(x,z) &= \varPi_{m}^{(S)} ( o_{j} )\tau_{2j}(x,z),\quad m = 2,3,\ j = 3,4,5, \end{aligned} \end{aligned}$$
(144)
$$\begin{aligned} &\begin{aligned} K_{01}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{0}^{(E)} ( \eta_{1} ) \chi_{21}(x,z) - \Delta_{0}^{(E)} ( \eta_{1} )\chi_{22}(x,z) \bigr],\\ K_{02}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{0}^{(E)} ( \eta_{1} )\chi_{21}(x,z) + \varGamma_{0}^{(E)} ( \eta_{1} )\chi_{22}(x,z) \bigr],\\ K_{0j}^{(E)}(x,z) &= \varPi_{0}^{(E)} ( o_{j} )\tau_{2j}(x,z),\quad j = 3,4,5, \\ K_{11}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{1}^{(E)} ( \eta_{1} ) \chi_{11}(x,z) - \Delta_{1}^{(E)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{12}^{(E)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{1}^{(E)} ( \eta_{1} )\chi_{11}(x,z) + \varGamma_{1}^{(E)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{1j}^{(E)}(x,z) &= \varPi_{1}^{(E)} ( o_{j} )\tau_{1j}(x,z), \quad j = 3,4,5, \end{aligned} \end{aligned}$$
(145)
$$\begin{aligned} &\begin{aligned} K_{01}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{0}^{(M)} ( \eta_{1} ) \chi_{21}(x,z) - \Delta_{0}^{(M)} ( \eta_{1} )\chi_{22}(x,z) \bigr], \\ K_{02}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{0}^{(M)} ( \eta_{1} )\chi_{21}(x,z) + \varGamma_{0}^{(M)} ( \eta_{1} )\chi_{22}(x,z) \bigr], \\ K_{0j}^{(M)}(x,z) &= \varPi_{0}^{(M)} ( o_{j} )\tau_{2j}(x,z),\quad j = 3,4,5,\\ K_{11}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \varGamma_{1}^{(M)} ( \eta_{1} ) \chi_{11}(x,z) - \Delta_{1}^{(M)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{12}^{(M)}(x,z) &= \frac{1}{2} \bigl[ \Delta_{1}^{(M)} ( \eta_{1} )\chi_{11}(x,z) + \varGamma_{1}^{(M)} ( \eta_{1} )\chi_{12}(x,z) \bigr], \\ K_{1j}^{(M)}(x,z) &= \varPi_{1}^{(M)} ( o_{j} )\tau_{1j}(x,z),\quad j = 3,4,5. \end{aligned} \end{aligned}$$
(146)

For Case (iii)

$$\begin{aligned} &\begin{aligned} K_{mj}^{(S)}(x,z) = \varPi_{m}^{(S)} ( o_{j} )\tau_{1j}(x,z),\quad m = 0,1,\ j = 1, \ldots,5, \\ K_{mj}^{(S)}(x,z) = \varPi_{m}^{(S)} ( o_{j} )\tau_{2j}(x,z),\quad m = 2,3,\ j = 1, \ldots,5, \end{aligned} \end{aligned}$$
(147)
$$\begin{aligned} &\begin{aligned} K_{0j}^{(E)}(x,z) = \varPi_{0}^{(E)} ( o_{j} )\tau_{2j}(x,z),\quad j = 1, \ldots,5, \\ K_{1j}^{(E)}(x,z) = \varPi_{1}^{(E)} ( o_{j} )\tau_{1j}(x,z),\quad j = 1, \ldots,5, \end{aligned} \end{aligned}$$
(148)
$$\begin{aligned} &\begin{aligned} K_{0j}^{(M)}(x,z) = \varPi_{0}^{(M)} ( o_{j} )\tau_{2j}(x,z),\quad j = 1, \ldots,5, \\ K_{1j}^{(M)}(x,z) = \varPi_{1}^{(M)} ( o_{j} )\tau_{1j}(x,z),\quad j = 1, \ldots,5. \end{aligned} \end{aligned}$$
(149)

In Case (ii) and Case (iii), known functions χ nj (x,z), δ nj (x,z) and τ nj (x,z) are the same forms as those given in Case (i) with eigenvalues changed to the related ones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YT., Kim, TW. Multi-field Response of Anisotropic Magneto-Electro-Elastic Materials at a Rigid Conducting Cylinder. J Elast 117, 63–94 (2014). https://doi.org/10.1007/s10659-013-9465-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9465-y

Keywords

Mathematics Subject Classification (2010)

Navigation