Skip to main content
Log in

On the Equivalence of Energetic and Geometric Shear Factors Based on Saint Venant Flexure

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The equivalence of the shear compliance tensor obtained via an energy approach and the shear compliance tensor obtained via a geometric/kinematic approach is proven in the context of Saint Venant flexure. Specifically, it is shown that such an equivalence holds, as a general result, for sections of arbitrary geometry when both these tensors are computed on the basis of the long wavelength shear warpage, i.e., of the shear warpage independent from the longitudinal abscissa, provided all long-wavelength terms are included. The equivalence of energetic and kinematic shear factors stems as an immediate consequence of the equivalence of shear compliance tensors.

A general analytical proof of this result is provided by analyzing in full detail the 3-dimensional elastostatic solution, inclusive of short-wavelength terminal fields, for a tip loaded cantilever. In particular, the developments reported exploit the objective tensor representations of stress and displacement fields solution to Saint Venant problem recently presented in a companion paper (Serpieri and Rosati, J. Elast., 2013).

The well posedness of the concepts of energetic principal shear axes and geometric principal shear axes is shown as a further direct consequence. In particular, principal shear axes are shown to deserve the same legitimacy of principal bending axes both under an energetic and a geometric/kinematic viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biollay, Y.: First boundary value problem in elasticity: bounds for the displacements in Saint-Venant’s principle. Z. Angew. Math. Phys. 31, 556–567 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cowper, G.R.: On the accuracy of Timoshenko beam theory. J. Appl. Mech. 33(2), 335–340 (1966)

    Article  ADS  MATH  Google Scholar 

  3. Dong, S.B., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timoshenko beam theory. Int. J. Solids Struct. 47(13), 1651–1665 (2010)

    Article  MATH  Google Scholar 

  4. Dong, S., Çarbas, S., Taciroglu, E.: On principal shear axes for correction factors in Timoshenko beam theory. Int. J. Solids Struct. 50(10), 1681–1688 (2013)

    Article  Google Scholar 

  5. Gruttmann, F., Sauer, R., Wagner, W.: Shear correction factors in Timoshenko’s beam for arbitrary cross-sections. Comput. Mech. 27, 199–207 (2001)

    Article  MATH  Google Scholar 

  6. Iesan, D.: On Saint-Venant’s problem. Arch. Ration. Mech. Anal. 91(4), 363–373 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kaneko, T.: On Timoshenko’s correction for shear in vibrating beams. J. Phys. D, Appl. Phys. 8, 1927–1936 (1975)

    Article  ADS  Google Scholar 

  8. Knops, R.J., Payne, L.E.: A Saint-Venant principle for nonlinear elasticity. Arch. Ration. Mech. Anal. 81, 1–12 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ladevéze, P., Simmonds, J.: New concepts for linear beam theory with arbitrary geometry and loading. Eur. J. Mech. A, Solids 17(3), 311–402 (1998)

    Article  Google Scholar 

  10. Love, E.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  11. Mason, W.E., Herrmann, L.R.: Elastic shear analysis of general prismatic beams. J. Eng. Mech. 94, 965–983 (1968)

    Google Scholar 

  12. Pilkey, W.D.: Analysis and Design of Elastic Beams: Computational Methods. Wiley, New York (2002)

    Book  Google Scholar 

  13. Renton, J.D.: Generalized beam theory applied to shear stiffness. Int. J. Solids Struct. 27(15), 1955–1967 (1991)

    Article  MATH  Google Scholar 

  14. Renton, J.D.: A note on the form of the shear coefficient. Int. J. Solids Struct. 34(14), 1681–1685 (1997)

    Article  MATH  Google Scholar 

  15. Renton, J.D.: Check on the accuracy of Timoshenko’s beam theory. J. Sound Vib. 245(3), 559–561 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Roseman, J.J.: A pointwise estimate for the stress in a cylinder and its application to Saint-Venant’s principle. Arch. Ration. Mech. Anal. 21, 23–48 (1966)

    Article  MathSciNet  Google Scholar 

  17. Sapountzakis, E.J., Mokos, V.G.: A BEM solution to transverse shear loading of beams. Comput. Mech. 36, 384–397 (1992)

    Article  Google Scholar 

  18. Serpieri, R., Rosati, L.: A frame-independent solution to Saint-Venant’s Flexure problem. J. Elast. (2013). Submitted

  19. Schramm, U., Kitis, L., Kang, W., Pilkey, W.D.: On the shear deformation coefficient in beam theory. Finite Elem. Anal. Des. 16, 141–162 (1994)

    Article  MATH  Google Scholar 

  20. Schramm, U., Rubenchik, V., Pilkey, W.D.: Beam stiffness matrix based on the elasticity equations. Int. J. Numer. Methods Eng. 40, 211–232 (1997)

    Article  Google Scholar 

  21. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  22. Stephen, N.G.: On “A check on the accuracy of Timoshenko’s beam theory”. J. Sound Vib. 257(4), 809–812 (2002)

    Article  ADS  Google Scholar 

  23. Timoshenko, S.P.: Strength of Materials. Part 1, 3rd edn. Van Nostrand, Princeton (1958)

    Google Scholar 

  24. Toupin, R.A.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83–96 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The contribution of Prof. Luciano Rosati and of Dr. Francesco Travascio is gratefully acknowledged for proof-reading of this manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Serpieri.

Appendices

Appendix A: Computation of the Rigid Motion

1.1 A.1 Axial Load

Equations (72) and (91) are hereby recalled as

$$\begin{aligned} &\check{\mathbf{p}}^{(DSV)}_{test} = \check{ \mathbf{p}}^{(DSV)}_{ax} = -\frac{\check{N}}{A}\mathbf{k}, \end{aligned}$$
(193)
$$\begin{aligned} &\check{\mathbf{u}}^{(DSV)}_{test} = \check{ \mathbf{u}}^{(DSV)}_{ax\, \varOmega_{0}} = - \nu \frac{\check{N}}{E A} \hat{ \boldsymbol{\rho}}, \end{aligned}$$
(194)

and are substituted into (88). The first and fourth terms on the LHS of this last equation vanish, as well as the third and fourth terms on the RHS, since the dot products involve orthogonal vectors. Moreover the third term on the LHS also vanishes since on Ω 0 r coincides with \(\hat {\boldsymbol{\rho}}\) and, recalling that the origin is placed at the centroid,

$$ \int_{\varOmega_{0}} \hat{\boldsymbol{\rho}} dA = \textbf{0} $$
(195)

so that one obtains, upon simplifying the dummy parameter \(\check{N}\), an explicit integral expression for the longitudinal component of the rigid translation

$$ u_{z0} = \frac{1}{GA} \mathbf{J}_{G}^{-1}{\mathbf{t}}\cdot \int _{\varOmega_{0}} \biggl\{ \biggl[ \boldsymbol{\psi}+(1-\bar{\nu}) \biggl( \frac{\hat {\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}}}{8} \biggr) \hat{\boldsymbol{\rho}} \biggr] \biggr\} dA - \frac{\nu}{E A} \int_{\varOmega_{0}} \tilde{ \mathbf{p}}_{cant} \cdot \hat{\boldsymbol{\rho}} dA. $$
(196)

It is useful to separate in the last expression the terms depending on the short wavelength solution from the terms that only depend on the Saint-Venant long wavelength part:

$$ u_{z0}= \bar{u}_{z0}+\tilde{u}_{z0}, $$
(197)

with

$$ \bar{u}_{z0} = \frac{1}{GA} \biggl( \mathbf{J}_{G}^{-1} \int_{\varOmega_{0}} \biggl[ \boldsymbol{\psi}+\frac{1-\bar{\nu}}{8}(\hat{ \boldsymbol {\rho}}\cdot\hat{\boldsymbol{\rho}})\hat{\boldsymbol{\rho }} \biggr] dA \biggr) \cdot{\mathbf{t}} $$
(198)

and

$$ \tilde{u}_{z0} = - \frac{\nu}{E A} \int_{\varOmega_{0}} \tilde{\mathbf{p}}_{cant} \cdot \hat{\boldsymbol{\rho}} dA. $$
(199)

1.2 A.2 Bending

Equations (73) and (92), hereby recalled as

$$\begin{aligned} &\check{\mathbf{p}}^{(DSV)}_{test} = \check{ \mathbf{p}}^{(DSV)}_{bend} = - ( \check{\mathbf{g}}\cdot\hat{ \boldsymbol{\rho}} ) \mathbf{k}, \end{aligned}$$
(200)
$$\begin{aligned} &\check{\mathbf{u}}^{(DSV)}_{test} = \check{ \mathbf{u}}^{(DSV)}_{bend\, \varOmega_{0}} = \frac{\nu}{E} \biggl[ \frac{(\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }})}{2}\check{\mathbf{g}}-(\check{\mathbf{g}}\cdot\hat {\boldsymbol{ \rho}}) \hat{\boldsymbol{\rho}} \biggr], \end{aligned}$$
(201)

are substituted into (88). The LHS of (88) becomes

$$\begin{aligned} &- \hat{\mathbf{u}}_{0} \cdot \int_{\varOmega_{0}} ( \check{\mathbf{g}}\cdot\hat{\boldsymbol{\rho}} ) \mathbf{k} dA - u_{z0} \mathbf{k} \cdot \int_{\varOmega_{0}} ( \check{\mathbf{g}}\cdot\hat{\boldsymbol{\rho}} ) \mathbf{k} dA \\ &\quad - \hat{\boldsymbol{\omega}}_{0} \cdot \int _{\varOmega_{0}} \hat{\boldsymbol{\rho}}\times ( \check{\mathbf{g}}\cdot \hat{\boldsymbol{\rho}} ) \mathbf{k} dA - \omega_{z0} \mathbf{k} \cdot \int_{\varOmega_{0}} \hat{\boldsymbol{\rho}}\times ( \check{ \mathbf{g}}\cdot\hat{\boldsymbol{\rho}} ) \mathbf{k} dA. \end{aligned}$$
(202)

The first and second integrals on the LHS of (88) both vanish, due to (195), as the origin is located at the centroid. The fourth term on the LHS also vanishes since it is a triple product containing k twice. The only nonvanishing third term on the LHS, as a triple product, can be manipulated on account of the identity \(\hat{\boldsymbol{\omega }}_{0} \cdot \hat{\boldsymbol{\rho}}\times\mathbf{k}=\mathbf{k}\times\hat {\boldsymbol{\omega}}_{0} \cdot\hat{\boldsymbol{\rho}}\) so as to make the inertia tensor, defined by (12), appear as

$$\begin{aligned} - \hat{\boldsymbol{\omega}}_{0} \cdot \int _{\varOmega_{0}} \hat{\boldsymbol{\rho}}\times ( \check{\mathbf{g}}\cdot \hat{\boldsymbol{\rho}} ) \mathbf{k} dA =& - \mathbf{k}\times\hat{\boldsymbol{ \omega}}_{0} \cdot \int_{\varOmega_{0}} ( \hat{\boldsymbol{ \rho}}\cdot\check{\mathbf{g}} ) \hat{\boldsymbol{\rho}} dA \\ =& - \mathbf{k}\times\hat{\boldsymbol{\omega}}_{0} \cdot \biggl( \int _{\varOmega_{0}} \hat{\boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}} dA \biggr) \check{\mathbf{g}} = - \mathbf{k}\times\hat{\boldsymbol{ \omega}}_{0} \cdot \mathbf{J}_{G} \check{\mathbf{g}} \\ =&- \mathbf{J}_{G} ( \mathbf{k}\times\hat{\boldsymbol{\omega}}_{0} ) \cdot \check{\mathbf{g}}. \end{aligned}$$
(203)

The third and fourth terms on the RHS of (88) are also zero since they contain the vanishing scalar products g t k and \(\hat{\boldsymbol{\rho}}\cdot\mathbf{k}\). Summarizing, weighting with bending functions, (88) specializes as follows:

$$\begin{aligned} - \mathbf{J}_{G} ( \mathbf{k}\times\hat{\boldsymbol{ \omega}}_{0} ) \cdot \check{\mathbf{g}} = & \frac{1}{G} \biggl\{ \int_{\varOmega_{0}} \biggl\{ \mathbf{g}_{{\mathbf{t}}}\cdot \biggl[ \boldsymbol{\psi}+(1-\bar{\nu}) \frac{1}{8}(\hat {\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}})\hat{ \boldsymbol {\rho}} \biggr] \biggr\} \hat{\boldsymbol{\rho}} dA \biggr\} \cdot \check{\mathbf{g}} \\ &{} - \frac{\nu}{E} \biggl( \int_{\varOmega_{0}} \biggl[ \frac{(\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }})}{2}\hat{\mathbf{I}}-(\hat{\boldsymbol{\rho}}\otimes\hat { \boldsymbol{\rho}}) \biggr] \tilde{\mathbf{p}}_{cant} dA \biggr) \cdot \check{\mathbf{g}}, \end{aligned}$$
(204)

and, since \(\check{\mathbf{g}}\) is arbitrary, one infers the vector identity

$$\begin{aligned} \mathbf{J}_{G} ( \mathbf{k}\times\hat{\boldsymbol{ \omega}}_{0} ) = &- \frac{1}{G} \biggl\{ \int _{\varOmega_{0}} \biggl\{ \biggl[\hat{\boldsymbol{\rho}} \otimes\boldsymbol{\psi}+(1-\bar {\nu})\frac{1}{8}(\hat{\boldsymbol{\rho}} \cdot\hat{\boldsymbol {\rho}} )\hat{\boldsymbol{\rho}}\otimes\hat{\boldsymbol{ \rho}} \biggr] \biggr\} dA \biggr\} \mathbf{g}_{{\mathbf{t}}} \\ &{} + \frac{\nu}{E} \biggl( \int_{\varOmega_{0}} \biggl[ \frac{(\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }})}{2}\hat{\mathbf{I}}-(\hat{\boldsymbol{\rho}}\otimes\hat { \boldsymbol{\rho}}) \biggr] \tilde{\mathbf{p}}_{cant} dA \biggr), \end{aligned}$$
(205)

which provides

$$\begin{aligned} \hat{\boldsymbol{\omega}}_{0} =& \mathbf{k}\times \frac{1}{G} \mathbf{J}_{G}^{-1} \biggl( \int _{\varOmega_{0}} \biggl( \biggl\{ \biggl[ \hat{\boldsymbol{\rho}}\otimes \boldsymbol{\psi}+(1-\bar {\nu})\frac{1}{8}(\hat{\boldsymbol{\rho}}\cdot \hat{\boldsymbol {\rho}} )\hat{\boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}} \biggr] \biggr\} \biggr) dA \biggr) \mathbf{g}_{{\mathbf{t}}} \\ &{} - \mathbf{k}\times \frac{\nu}{E} \mathbf{J}_{G}^{-1} \biggl( \int_{\varOmega_{0}} \biggl[ \frac{(\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }})}{2}\hat{ \mathbf{I}}-(\hat{\boldsymbol{\rho}}\otimes\hat {\boldsymbol{\rho}}) \biggr] \tilde{\mathbf{p}}_{cant} dA \biggr). \end{aligned}$$
(206)

Splitting (206) into terms depending on the short wavelength solution and terms that only depend on the Saint-Venant long wavelength part, one gets

$$ \hat{\boldsymbol{\omega}}_{0} = \hat{\bar{\boldsymbol{ \omega}}}_{0} + \hat{\tilde{\boldsymbol{\omega}}}_{0}, $$
(207)

where, recalling that \(\mathbf{g}_{{\mathbf{t}}}=-\mathbf {J}_{G}^{-1}{\mathbf{t}}\), it turns out that

$$ \hat{\bar{\boldsymbol{\omega}}}_{0} = - \mathbf{k}\times \frac{1}{G} \mathbf{J}_{G}^{-1} \biggl( \int _{\varOmega_{0}} \biggl( \biggl\{ \biggl[ \hat{\boldsymbol{\rho}}\otimes \boldsymbol{\psi}+(1-\bar {\nu})\frac{1}{8}(\hat{\boldsymbol{\rho}}\cdot \hat{\boldsymbol {\rho}} )\hat{\boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}} \biggr] \biggr\} \biggr) dA \biggr) \mathbf{J}_{G}^{-1} { \mathbf{t}} $$
(208)

and

$$ \hat{\tilde{\boldsymbol{\omega}}}_{0} = - \mathbf{k}\times \frac{\nu}{E} \mathbf{J}_{G}^{-1} \biggl( \int _{\varOmega_{0}} \biggl[ \frac{(\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }})}{2}\hat{\mathbf{I}}-(\hat{ \boldsymbol{\rho}}\otimes\hat {\boldsymbol{\rho}}) \biggr] \tilde{ \mathbf{p}}_{cant} dA \biggr). $$
(209)

1.3 A.3 Torsion

Substituting (74) and (93), i.e.,

$$\begin{aligned} &\check{\mathbf{p}}^{(DSV)}_{test} = \check{ \mathbf{p}}^{(DSV)}_{tor} =-G\check{\theta}' (\mathbf {k}\times\hat{\boldsymbol{\rho}} +\boldsymbol{\nabla}\varphi_{t} ), \end{aligned}$$
(210)
$$\begin{aligned} & \check{\mathbf{u}}^{(DSV)}_{test} = \check{ \mathbf{u}}^{(DSV)}_{tor\, \varOmega_{0}} =\check{\theta}' \varphi_{t} \mathbf{k}, \end{aligned}$$
(211)

into (88), it is recognized that the sum of the first two terms on the LHS of (88) is equal to zero for translational equilibrium:

$$ \mathbf{u}_{0} \cdot \int_{\varOmega_{0}} \check{ \mathbf{p}}^{(DSV)}_{tor} dA = 0 $$
(212)

since \(\check{\mathbf{p}}^{(DSV)}_{tor}\) has zero cross sectional force resultant

$$ \int_{\varOmega_{0}} \check{\mathbf{p}}^{(DSV)}_{tor} dA = \mathbf{o}. $$
(213)

The second term on the LHS also vanishes, i.e.,

$$ \hat{\boldsymbol{\omega}}_{0} \cdot \int_{\varOmega_{0}} \hat{\boldsymbol{\rho}}\times\check{\mathbf{p}}^{(DSV)}_{tor} dA = 0 $$
(214)

since \(\hat{\boldsymbol{\rho}}\times\check{\mathbf {p}}^{(DSV)}_{tor}\) is directed along k, because both \(\check{\mathbf{p}}^{(DSV)}_{tor}\) and \(\hat {\boldsymbol{\rho}}\) are transverse fields, and their cross product is thus orthogonal to the transverse vector \(\hat{\boldsymbol{\omega}}_{0}\). The only term remaining on the LHS can be manipulated on account of (12)3 and of the property of the triple product as follows:

$$\begin{aligned} \omega_{z0} \mathbf{k} \cdot \int_{\varOmega_{0}} \hat{\boldsymbol{\rho}}\times\check{\mathbf{p}}^{(DSV)}_{tor} dA =& \omega_{z0} \int_{\varOmega_{0}} \mathbf{k} \times\hat{ \boldsymbol{\rho}} \cdot\check{\mathbf{p}}^{(DSV)}_{tor} dA \\ =& - G \check{\theta}' \omega_{z0} \int _{\varOmega} \mathbf{k}\times\hat{\boldsymbol{\rho}} \cdot \bigl[ ( \mathbf{k}\times\hat{\boldsymbol{\rho}} )+\varphi_t \boldsymbol{ \nabla}\bigr] dA \\ =& - G \check{\theta}' I_q \omega_{z0}. \end{aligned}$$
(215)

Turning to the RHS, the first and second terms are equal to zero since they both contain the zero term \(( \check{\mathbf{p}}^{(DSV)}_{tor} \cdot \mathbf{k} ) \). The sum of the third and fourth terms on the RHS is computed as

$$\begin{aligned} &- \frac{\nu l}{E} \int_{\varOmega_{0}} \biggl[ \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) \mathbf{g}_{t} - ( \mathbf{g}_t\cdot\hat{\boldsymbol{\rho}} ) \hat{\boldsymbol{\rho}} \biggr] \cdot \check{\mathbf{p}}^{(DSV)}_{tor} dA \\ &\quad = G\check{\theta}' \frac{\nu l}{E} \int _{\varOmega_{0}} \biggl[ \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) \mathbf{g}_{t} - (\mathbf{g}_t\cdot\hat{\boldsymbol{\rho}} ) \hat{\boldsymbol{\rho}} \biggr] \cdot (\mathbf{k}\times\hat{\boldsymbol{\rho}}+ \boldsymbol{\nabla }\varphi_{t} ) dA \\ &\quad = G\check{\theta}' \frac{\nu l}{E} \int _{\varOmega_{0}} \biggl[ \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) \mathbf{g}_{t} \cdot (\mathbf{k}\times\hat{\boldsymbol{\rho}}+ \boldsymbol{\nabla }\varphi_{t} ) - (\mathbf{g}_t\cdot \hat{\boldsymbol{\rho}} ) \hat{\boldsymbol{\rho}} \cdot (\boldsymbol{\nabla} \varphi_{t} ) \biggr] dA, \end{aligned}$$
(216)

where the last equality is obtained in view of the simplification \(\hat {\boldsymbol{\rho}} \cdot\mathbf{k}\times\hat{\boldsymbol{\rho}}=0\). Finally, the last integral on the RHS of (88) is computed as

$$ - \int_{\varOmega_{tot}} \tilde{\mathbf{p}}_{cant} \cdot \check{ \mathbf{u}}^{(DSV)}_{tor} dA = \int_{\varOmega_{0}} \check{\theta}' \tilde{\sigma}_{z\, cant} \varphi_{t} dA. $$
(217)

Summarizing and simplifying considering the dummy parameter \(\check{\theta}'\), we infer from (88) that

$$ \omega_{z0}=\bar{\omega}_{z0}+\tilde{\omega}_{z0}, $$
(218)

where

$$\begin{aligned} &\bar{\omega}_{z0} = - \frac{\nu l}{E I_q} \mathbf{g}_{t} \cdot \int_{\varOmega_{0}} \biggl[ \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) (\mathbf{k}\times\hat{\boldsymbol{ \rho}}+\boldsymbol{\nabla }\varphi_{t} ) - \bigl[ \hat{\boldsymbol{ \rho}} \cdot (\boldsymbol{\nabla}\varphi_{t} ) \bigr] \hat{\boldsymbol{ \rho}} \biggr] dA, \end{aligned}$$
(219)
$$\begin{aligned} &\tilde{\omega}_{z0} = - \frac{1}{G I_q} \int _{\varOmega_{0}} \tilde{\sigma}_{z\, cant} \varphi_{t} dA. \end{aligned}$$
(220)

However, (219) can be further manipulated since, on account of (46), one has

$$ \int_{\varOmega_{0}} \biggl[ \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) \hat{ \mathbf{I}} - ( \hat{\boldsymbol{\rho}} \otimes \hat{\boldsymbol{\rho}} ) \biggr] (\boldsymbol{\nabla}\varphi_{t} ) dA = \int_{\varOmega_{0}} \bigl[ 4 (\mathbf{p}\otimes\boldsymbol{\nabla} ) - 2 ( \hat{ \boldsymbol{\rho}} \otimes \hat{\boldsymbol{\rho}} ) \bigr] (\boldsymbol{\nabla} \varphi_{t} ) dA, $$
(221)

and, due to (222), one infers

$$\begin{aligned} \int_{\varOmega_{0}} \biggl[ \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) \hat{\mathbf{I}} - \hat{\boldsymbol{\rho}} \otimes \hat{ \boldsymbol{\rho}} \biggr] (\boldsymbol{\nabla}\varphi_{t} ) dA = & - \int_{\varOmega} \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) ( \mathbf{k}\times\hat{\boldsymbol{\rho}} ) dA \\ &{} - 2 \int_{\varOmega} ( \hat{\boldsymbol{\rho}} \otimes \hat{ \boldsymbol{\rho}} ) (\boldsymbol{\nabla}\varphi_{t} ) dA, \end{aligned}$$
(222)

so that (219) becomes

$$ \bar{\omega}_{z0} = 2 \frac{\nu l}{E I_q} \mathbf{g}_{t} \cdot \int_{\varOmega} ( \hat{\boldsymbol{\rho}} \otimes \hat{\boldsymbol{\rho}} ) (\boldsymbol{\nabla} \varphi_{t} ) dA. $$
(223)

1.4 A.4 Reversed Cantilever

Equations (75) and (95) are recalled as

$$\begin{aligned} & \check{\mathbf{p}}^{(DSV)}_{test} = \check{ \mathbf{p}}^{(DSV)}_{r.cant} = - \biggl[ \boldsymbol{\nabla}\otimes \boldsymbol{\psi} + \frac{1+\bar{\nu}}{4} ( \hat{\boldsymbol{\rho}}\otimes\hat{ \boldsymbol{\rho }} ) + \frac{1-3\bar{\nu}}{8} ( \hat{\boldsymbol{\rho}}\cdot\hat{ \boldsymbol{\rho }} ) \mathbf{I} \biggr] \check{\mathbf{g}}_{t}, \end{aligned}$$
(224)
$$\begin{aligned} &\check{\mathbf{u}}^{(DSV)}_{r.cant\, \varOmega_{0}} = \biggl[ \frac{1}{G} ( \check{\mathbf{g}}_t \cdot\boldsymbol{\psi} )+ \frac{1}{4E} ( \check{\mathbf{g}}_t \cdot\hat{\boldsymbol{\rho}} ) ( \hat{ \boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }} ) \biggr] \mathbf{k} + \frac{1 }{E} \biggl( \frac{2}{3} \biggr) l^{3} \check{ \mathbf{g}}_t + \frac{1}{E} \frac{l^{2}}{2} (\check{ \mathbf{g}}_t \cdot\boldsymbol{\rho})\mathbf{k}. \end{aligned}$$
(225)

By substituting these equations into (88) we see that the integral appearing in the first term on the LHS of (88) is simply equal to the shear stress resultant. As a consequence, in view of (20), one has

$$ \hat{\mathbf{u}}_{0} \cdot \int_{\varOmega_{0}} \check{ \mathbf{p}}^{(DSV)}_{r.cant} dA = \hat{\mathbf{u}}_{0} \cdot \int_{\varOmega_{0}} (- \check{\boldsymbol{\tau}}_{sh} ) dA = - \hat{\mathbf{u}}_{0} \cdot \check{{\mathbf{t}}}_{sh} = \mathbf{J}_{G} \hat{\mathbf{u}}_{0} \cdot \check{ \mathbf{g}}_{t}. $$
(226)

Analogous considerations lead to the conclusion that the second term on the LHS of (88) is equal to zero, as well as the third term which vanishes since it contains a dot product between orthogonal vectors.

The fourth term on the LHS is computed below accounting of the property of the shear center \(\hat{\boldsymbol{\rho}}_{C}\) stated by (8) and the properties of the triple product:

$$\begin{aligned} \omega_{z0} \mathbf{k} \cdot \int_{\varOmega_{0}} \hat{\boldsymbol{\rho}}\times\check{\mathbf{p}}^{(DSV)}_{r.cant} dA =& \omega_{z0}\mathbf{k} \cdot \int_{\varOmega_{0}} \hat{ \boldsymbol{\rho}}\times (-\check{\boldsymbol{\tau}}_{sh} ) dA = \omega_{z0}\mathbf{k} \cdot \hat{ \boldsymbol{\rho}}_{C}\times\check{{\mathbf{t}}} \\ =& \omega_{z0} ( \hat{\boldsymbol{\rho}}_{C}\times \mathbf{J}_{G} \check{\mathbf{g}}_{t} ) \cdot \mathbf{k} = \omega_{z0} \mathbf{k}\times\hat{\boldsymbol{\rho}}_{C} \cdot ( \mathbf{J}_{G} \check{\mathbf{g}}_{t} ) \\ =& \omega_{z0} \mathbf{J}_{G} ( \mathbf{k}\times\hat{ \boldsymbol{\rho}}_{C} ) \cdot \check{\mathbf{g}}_{t}. \end{aligned}$$
(227)

At the RHS the first and second terms vanish because they contain zero dot products. The third term is computed as

$$\begin{aligned} &- \frac{\nu l}{E} \int_{\varOmega_{0}} \biggl( \frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) \bigl( \check{\mathbf{p}}^{(DSV)}_{r.cant} \cdot \mathbf{g}_{t} \bigr) dA \\ &\quad= \frac{\nu l}{E} \int_{\varOmega_{0}} \biggl[ \biggl( \frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) ( \boldsymbol{\psi}\otimes\boldsymbol{\nabla} ) + \frac{1+\bar{\nu}}{4} \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) ( \hat{\boldsymbol{\rho}} \otimes\hat{\boldsymbol{\rho }} ) \\ &\quad\quad{}+ \frac{1-3\bar{\nu}}{8} \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) ( \hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }} ) \mathbf{I} \biggr] dA \mathbf{g}_{t} \cdot \check{\mathbf{g}}_{t}. \end{aligned}$$
(228)

The fourth term on the RHS is computed as

$$\begin{aligned} &\frac{\nu l}{E} \int_{\varOmega_{0}} ( \mathbf{g}_t\cdot\hat{\boldsymbol{\rho}} ) \bigl( \check{ \mathbf{p}}^{(DSV)}_{test} \cdot \hat{\boldsymbol{\rho}} \bigr) dA \\ &\quad= - \frac{\nu l}{E} \int_{\varOmega_{0}} \biggl( \biggl[ \boldsymbol{\psi}\otimes\boldsymbol{\nabla} + \frac{1+\bar{\nu}}{4} ( \hat{ \boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho }} ) + \frac{1-3\bar{\nu}}{8} ( \hat{ \boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }} ) \mathbf{I} \biggr] (\hat{ \boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho }} ) \mathbf{g}_t \biggr) dA \cdot \check{\mathbf{g}}_{t} \\ &\quad= - \frac{\nu l}{E} \int_{\varOmega_{0}} \biggl( \biggl[ ( \boldsymbol{\psi}\otimes\boldsymbol{\nabla} ) (\hat{\boldsymbol{\rho}}\otimes\hat{ \boldsymbol{\rho }} ) + \frac{1+\bar{\nu}}{4} ( \hat{\boldsymbol{\rho}}\otimes\hat{ \boldsymbol{\rho }} ) (\hat{\boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho }} ) \\ &\quad\quad{}+ \frac{1-3\bar{\nu}}{8} ( \hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }} ) (\hat{ \boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho }} ) \biggr] \mathbf{g}_t \biggr) dA \cdot \check{\mathbf{g}}_{t}. \end{aligned}$$
(229)

The sum of (228) and (229) turns out to be, upon rearranging terms,

$$\begin{aligned} &\frac{\nu}{E}l \biggl[ \int_{\varOmega_{0}} \biggl( \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) - ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) (\hat{\boldsymbol {\rho}} \otimes\hat{\boldsymbol{\rho}}) \biggr) dA \biggr] \mathbf{g}_{{\mathbf{t}}} \cdot \check{\mathbf{g}}_{t} \\ &\quad{} + \frac{\nu}{E}l \biggl[ \int_{\varOmega_{0}} \biggl( \frac{(\bar{\nu}-1)}{4} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}}) (\hat { \boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}}) + \frac{(1-3\bar{\nu})}{16} (\hat{ \boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}})^{2} \hat{\mathbf{I}} \biggr) dA \biggr] \mathbf{g}_{{\mathbf{t}}} \cdot \check{\mathbf{g}}_{t}. \end{aligned}$$
(230)

Concerning the SW dependent part of the rigid motion, the last term to be computed is the fourth on the RHS. Thus,

$$ - \int_{\varOmega_{0}} \tilde{\mathbf{p}}_{cant\, 0} \cdot \check{ \mathbf{u}}^{(DSV)}_{r.cant} dA = \int_{\varOmega_{0}} ( \tilde{\sigma}_{z\, cant} \mathbf{k} + \tilde{\boldsymbol{ \tau}}_{cant} ) \cdot \check{\mathbf{u}}^{(DSV)}_{r.cant} dA $$
(231)

and one infers

$$\begin{aligned} - \int_{\varOmega_{0}} \tilde{\mathbf{p}}_{cant} \cdot \check{\mathbf{u}}^{(DSV)}_{r.cant} dA = & \biggl( \int _{\varOmega_{0}} \tilde{\sigma}_{z\, cant} \biggl[ \frac{1}{G} \boldsymbol{\psi}+ \frac{1}{4E} ( \hat{\boldsymbol{\rho}} \cdot\hat{\boldsymbol{\rho }} ) \hat{\boldsymbol{\rho}} \biggr] \mathbf{k} dA \biggr) \cdot \check{\mathbf{g}}_t \\ &{} + \frac{1}{E} \frac{l^{2}}{2} \check{\mathbf{g}}_t \cdot \int_{\varOmega_{0}} \tilde{\sigma}_{z\, cant} \boldsymbol{ \rho} dA + \frac{1 }{E} \biggl( \frac{2}{3} \biggr) l^{3} \check{\mathbf{g}}_t \cdot \int _{\varOmega_{0}} \tilde{\boldsymbol{\tau}}_{cant} dA. \end{aligned}$$
(232)

It is recognized that the second and third integrals in the last expression vanish since \(\tilde{\mathbf{p}}_{cant}\), as a cross-sectional equilibrated field, has both zero axial force resultant and bending momentum resultant on Ω 0. Consequently, one has

$$ - \int_{\varOmega_{0}} \tilde{\mathbf{p}}_{cant} \cdot \check{ \mathbf{u}}^{(DSV)}_{r.cant} dA = \frac{1}{G} \biggl( \int _{\varOmega_{0}} \tilde{\sigma}_{z\, cant} \biggl[\boldsymbol{\psi}+ \frac{1-\bar{\nu}}{8} (\hat {\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}} ) \hat{ \boldsymbol{\rho}} \biggr] dA \biggr) \cdot \check{\mathbf{g}}_t. $$
(233)

Hence, recapitulating, by weighting with the stress field associated with the reversed cantilever solution, we find the following

$$\begin{aligned} &\omega_{z0} \mathbf{J}_{G} ( \mathbf{k} \times\hat{\boldsymbol{\rho}}_{C} ) \cdot \check{\mathbf{g}}_{t} + \mathbf{J}_{G} \hat{\mathbf{u}}_{0} \cdot \check{ \mathbf{g}}_{t} \\ &\quad= \frac{\nu}{E}l \biggl[ \int_{\varOmega_{0}} \biggl( \biggl(\frac{\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho }}}{2} \biggr) ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) - ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) (\hat{\boldsymbol {\rho}} \otimes\hat{\boldsymbol{\rho}}) \biggr) dA \biggr] \mathbf{g}_{{\mathbf{t}}} \cdot \check{\mathbf{g}}_{t} \\ &\quad\quad{}+ \frac{\nu}{E}l \biggl[ \int_{\varOmega_{0}} \biggl( \frac{(\bar{\nu}-1)}{4} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}}) (\hat { \boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}}) + \frac{(1-3\bar{\nu})}{16} (\hat{ \boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}})^{2} \hat{\mathbf{I}} \biggr) dA \biggr] \mathbf{g}_{{\mathbf{t}}} \cdot \check{\mathbf{g}}_{t} \\ &\quad\quad{}+ \frac{1}{G} \biggl( \int_{\varOmega_{0}} \tilde{ \sigma}_{z\, cant} \biggl[\boldsymbol{\psi}+ \frac{1-\bar{\nu}}{8} (\hat { \boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}} ) \hat{\boldsymbol{\rho}} \biggr] dA \biggr) \cdot \check{\mathbf{g}}_t. \end{aligned}$$
(234)

Moreover, since \(\check{\mathbf{g}}_{t}\) is arbitrary, we obtain the identity

$$\begin{aligned} \mathbf{J}_{G} \hat{\mathbf{u}}_{0} =& - \frac{\nu}{E}l \biggl[ \biggl( \int_{\varOmega_{0}} ({\boldsymbol{ \psi}}\otimes\boldsymbol{\nabla}) (\hat{\boldsymbol {\rho}}\otimes\hat{ \boldsymbol{\rho}}) - ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) \frac{(\hat {\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}})}{2}\hat{\mathbf{I}} \biggr) dA \biggr] \mathbf{g}_{{\mathbf{t}}} \\ &{}+ \frac{\nu}{E}l \biggl[ \int_{\varOmega_{0}} \biggl( \frac{(\bar{\nu}-1)}{4} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}}) (\hat { \boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}}) + \frac{(1-3\bar{\nu})}{16} (\hat{ \boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}})^{2} \hat{\mathbf{I}} \biggr) dA \biggr] \mathbf{g}_{{\mathbf{t}}} \\ &{} - \omega_{z0} \mathbf{J}_{G} ( \mathbf{k}\times\hat{ \boldsymbol{\rho}}_{C} ) + \frac{1}{G} \biggl( \int _{\varOmega_{0}} \tilde{\sigma}_{z\, cant} \biggl[\boldsymbol{\psi}+ \frac{1-\bar{\nu}}{8} (\hat {\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}} ) \hat{ \boldsymbol{\rho}} \biggr] dA \biggr). \end{aligned}$$
(235)

Introducing the usual separation of the terms depending solely on the long wavelength part of the solution, (235) provides at last

$$ \hat{\mathbf{u}}_{0} = \hat{\bar{\mathbf{u}}}_{0} + \hat{ \tilde{\mathbf{u}}}_{0} , \qquad \omega_{z0}=\bar{ \omega}_{z0}+\tilde{\omega}_{z0}, $$
(236)

where, taking also into account (20),

$$\begin{aligned} \hat{\bar{\mathbf{u}}}_{0} =& \frac{\nu}{E}l \mathbf{J}_{G}^{-1} \biggl[ \biggl( \int_{\varOmega_{0}} ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) (\hat{\boldsymbol {\rho}}\otimes \hat{\boldsymbol{\rho}}) - ({\boldsymbol{\psi}}\otimes\boldsymbol{\nabla}) \frac{(\hat {\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}})}{2}\hat{\mathbf{I}} \biggr) dA \biggr] \mathbf{J}_{G}^{-1} {\mathbf{t}} \\ &{} - \frac{\nu}{E}l \mathbf{J}_{G}^{-1} \biggl[ \int _{\varOmega_{0}} \biggl( \frac{(\bar{\nu}-1)}{4} (\hat{\boldsymbol{\rho}}\cdot \hat{\boldsymbol{\rho}}) (\hat {\boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}}) + \frac{(1-3\bar{\nu})}{16} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{ \rho}})^{2} \hat{\mathbf{I}} \biggr) dA \biggr] \mathbf{J}_{G}^{-1} {\mathbf{t}} \\ &{}- \bar{\omega}_{z0} ( \mathbf{k}\times\hat{\boldsymbol{ \rho}}_{C} ), \end{aligned}$$
(237)
$$\begin{aligned} \hat{\tilde{\mathbf{u}}}_{0} =& - \tilde{\omega}_{z0} ( \mathbf{k}\times\hat{\boldsymbol{\rho}}_{C} ) - \frac{1}{G} \mathbf{J}_{G}^{-1} \biggl( \int_{\varOmega_{0}} \tilde{\sigma}_{z\, cant} \bigl[\boldsymbol{\psi}+ (1-\bar{\nu})\mathbf{p} \bigr] dA \biggr). \end{aligned}$$
(238)

Appendix B: Further Identities

2.1 B.1 Identity 1

It is shown that the tensor

$$ \int_{\varOmega} (\mathbf{p}\otimes\boldsymbol{\nabla}) ( \boldsymbol{\nabla}\otimes\boldsymbol{\psi}) dA $$
(239)

admits the following symmetric representation:

$$ \int_{\varOmega} (\mathbf{p}\otimes\boldsymbol{\nabla}) ( \boldsymbol{\nabla}\otimes\boldsymbol{\psi}) dA = - \frac{1}{4} \int _{\varOmega} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}}) \hat{\boldsymbol{\rho}}\otimes\hat{\boldsymbol{\rho}} dA - \frac{1-3\bar{\nu}}{64} \int_{\varOmega} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{ \rho}})^{2} \hat{\mathbf{I}} dA, $$
(240)

so that by virtue of the symmetry of the RHS of (240) one has

$$ \int_{\varOmega} (\mathbf{p}\otimes\boldsymbol{\nabla}) ( \boldsymbol{\nabla}\otimes\boldsymbol{\psi}) dA = \int_{\varOmega} (\boldsymbol{\psi}\otimes\boldsymbol{\nabla}) (\boldsymbol{\nabla}\otimes \mathbf{p}) dA = \int_{\varOmega} (\boldsymbol{\psi}\otimes \boldsymbol{\nabla}) (\mathbf{p}\otimes\boldsymbol{\nabla}) dA. $$
(241)

The proof of (240) is shown below with the aid of index notation. Due to the harmonicity of ψ j and the divergence theorem, we see that

$$ \int_{\varOmega} p_{i,k}\psi_{j,k} dA = \int _{\varOmega} (p_{i}\psi_{j,k})_{,k} dA = \int_{\partial\varOmega} (p_{i}\psi_{j,k})n_{k} ds = \int_{\partial\varOmega} -(p_{i}A_{jk})n_{k} ds, $$
(242)

where the last equality stems from the boundary property (11)2. Moreover, invoking again the divergence theorem one infers

$$ \int_{\partial\varOmega} -(p_{i}A_{jk})n_{k} ds = \int_{\varOmega} -(p_{i}A_{jk})_{,k} dA = - \int_{\varOmega} p_{i,k}A_{jk} dA - \int_{\varOmega} p_{i}A_{jk,k} dA, $$
(243)

so that we obtain

$$ \int_{\varOmega} p_{i,k}\psi_{j,k} dA = - \int_{\varOmega} p_{i,k}A_{jk} dA - \int _{\varOmega} p_{i}A_{jk,k} dA. $$
(244)

Finally, recalling (46), which in index notation reads

$$ p_{i,k}=\frac{1}{4}\rho_{i}\rho_{k}+ \frac{1}{8}\rho_{h}\rho _{h}\delta_{ik}, $$
(245)

and substituting this relation in (244), together with (6) and (48), one obtains the sought relation (240), i.e.,

$$ \int_{\varOmega} p_{i,k}\psi_{j,k} dA = - \frac{1}{4} \int_{\varOmega} \rho_{k} \rho_{k} \rho_{i}\rho_{j} dA - \frac{1-3\bar{\nu}}{64} \int_{\varOmega} (\rho_{k} \rho_{k})^{2} \delta_{ij} dA. $$
(246)

2.2 B.2 Identity 2

An alternate representation is derived for the integral

$$ \int_{\varOmega} \boldsymbol{\rho}\otimes\boldsymbol{\psi} dA $$
(247)

by expressing \(\hat{\boldsymbol{\rho}}\) as the divergence of A p on account of (48). Accordingly, turning to index notation (in index notation (48) reads A ik,k =ρ i ) one infers

$$ \int_{\varOmega} \rho_{i} \psi_{j} dA = \int_{\varOmega} A_{ik,k} \psi_{j} dA = \int _{\varOmega} (A_{ik} \psi_{j})_{,k} dA - \int_{\varOmega} A_{ik} \psi_{j,k} dA. $$
(248)

However, by the divergence theorem one has

$$ \int_{\varOmega} (A_{ik} \psi_{j})_{,k} dA = \int_{\partial\varOmega} (A_{ik} \psi_{j})n_{k} ds, $$
(249)

and, due to the boundary condition (11)2 for A p, which in index notation reads A ik n k =−ψ i,k n k , one infers

$$ \int_{\partial\varOmega} (A_{ik} \psi_{j})n_{k} ds = - \int_{\partial\varOmega} (\psi_{i,k} \psi_{j})n_{k} ds = - \int_{\varOmega} ( \psi_{i,k} \psi_{j})_{,k} dA. $$
(250)

Moreover, since ψ is harmonic one has

$$ (\psi_{i,k} \psi_{j})_{,k}=\psi_{i,kk} \psi_{j}+\psi_{i,k} \psi _{j,k}= \psi_{i,k}\psi_{j,k} $$
(251)

and, consequently,

$$ \int_{\varOmega} \rho_{i} \psi_{j} dA = -\int_{\varOmega}\psi_{i,k}\psi_{j,k} dA - \int_{\varOmega} A_{ik} \psi_{j,k} dA. $$
(252)

It is easily recognized that the second integrand function on the RHS of (252) turns out to be equal to

$$ A_{ik}=(1+\bar{\nu})p_{i,k}-\frac{1}{2}\bar{\nu} \rho_{h}\rho _{h}\delta_{ik}. $$
(253)

Substituting (253) into (252) one finally obtains

$$ \int_{\varOmega} \rho_{i} \psi_{j} dA = -\int_{\varOmega}\psi_{i,k}\psi_{j,k} dA - (1+\bar{\nu}) \int_{\varOmega} p_{i,k} \psi_{j,k} dA + \frac{1}{2}\bar{\nu} \int_{\varOmega} \rho_{h}\rho_{h} \psi_{j,i} dA, $$
(254)

which in implicit notation reads

$$\begin{aligned} \int_{\varOmega} \boldsymbol{\rho}\otimes\boldsymbol{ \psi} dA =& -\int_{\varOmega} (\boldsymbol{\psi}\otimes \boldsymbol{\nabla}) (\boldsymbol{\nabla }\otimes\boldsymbol{\psi}) dA - (1+\bar{\nu}) \int_{\partial\varOmega} ( \mathbf{p}\otimes\boldsymbol{\nabla}) (\boldsymbol{\nabla}\otimes\boldsymbol{ \psi}) dA \\ &{}+ \frac{\bar{\nu}}{2} \int_{ \varOmega} (\boldsymbol{\rho}\cdot \boldsymbol{\rho}) (\boldsymbol{\nabla }\otimes\boldsymbol{\psi}) dA. \end{aligned}$$
(255)

2.3 B.3 Identity 3

The tensor

$$ \int_{\varOmega} (\mathbf{p}\otimes\boldsymbol{\nabla}) \boldsymbol{\nabla}\varphi_{t} dA $$
(256)

admits the following representation:

$$ \int_{\varOmega} (\mathbf{p}\otimes\boldsymbol{\nabla}) \boldsymbol{\nabla}\varphi_{t} dA = - \frac{1}{8} \int _{\varOmega} (\hat{\boldsymbol{\rho}}\cdot\hat{\boldsymbol{\rho}}) ( \mathbf{k}\times\hat{\boldsymbol{\rho}} ) dA. $$
(257)

The proof of (257) is shown below, again with the aid of index notation. Due to the harmonicity of φ t and the divergence theorem, we see that

$$ \int_{\varOmega} p_{i,k}\varphi_{t,k} dA = \int_{\varOmega} (p_{i}\varphi_{t,k})_{,k} dA = \int_{\partial\varOmega} p_{i}\varphi_{t,k}n_{k} ds = \int_{\partial\varOmega} -p_{i}\rho_{k}^{\bot}n_{k} ds, $$
(258)

where the last equality in (258) stems from the boundary property (10)2. Moreover, invoking again the divergence theorem one infers

$$ \int_{\partial\varOmega} -p_{i}\rho_{k}^{\bot}n_{k} ds = \int_{\varOmega} -\bigl(p_{i} \rho_{k}^{\bot}\bigr)_{,k} dA = - \int_{\varOmega} -\bigl(p_{i,k}\rho_{k}^{\bot}+p_{i} \rho_{k,k}^{\bot}\bigr)_{,k} dA. $$
(259)

However, since the divergence of \(\hat{\boldsymbol{\rho}}^{\bot}\) is zero, recalling (46) one finally obtains

$$ p_{i,k}\varphi_{t,k} dA = - \int_{\varOmega} \biggl( \frac{1}{4} \rho_{i}\rho_{k} + \frac{1}{8} \rho_{l}\rho_{l} \delta_{ik} \biggr) \rho_{k}^{\bot} dA = - \int_{\varOmega} \frac{1}{8} \rho_{l}\rho_{l} \rho_{i}^{\bot} dA, $$
(260)

which is (257) in index notation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpieri, R. On the Equivalence of Energetic and Geometric Shear Factors Based on Saint Venant Flexure. J Elast 116, 115–160 (2014). https://doi.org/10.1007/s10659-013-9459-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9459-9

Keywords

Mathematics Subject Classification

Navigation