Skip to main content
Log in

Boundary Perturbations Due to the Presence of Small Linear Cracks in an Elastic Body

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper, Neumann cracks in elastic bodies are considered. We establish a rigorous asymptotic expansion for the boundary perturbations of the displacement (and traction) vectors that are due to the presence of a small elastic linear crack. The formula reveals that the leading order term is ε 2 where ε is the length of the crack, and the ε 3-term vanishes. We obtain an asymptotic expansion of the elastic potential energy as an immediate consequence of the boundary perturbation formula. The derivation is based on layer potential techniques. It is expected that the formula would lead to very effective direct approaches for locating a collection of small elastic cracks and estimating their sizes and orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Calmon, P., Iakovleva, E.: Direct elastic imaging of a small inclusion. SIAM J. Imaging Sci. 1, 169–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari, H., Garnier, J., Jugnon, V., Kang, H.: Direct reconstruction methods in ultrasound imaging of small anomalies. In: Lecture Notes in Mathematics, vol. 2035, pp. 31–55. Springer, Berlin (2011)

    Google Scholar 

  3. Ammari, H., Garnier, J., Kang, H., Park, W.K., Sølna, K.: Imaging schemes for perfectly conducting cracks. SIAM J. Appl. Math. 71, 68–91 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari, H., Garnier, J., Sølna, K.: A statistical approach to target detection and localization in the presence of noise. Waves Random Complex Media 22, 40–65 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  6. Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences, vol. 162. Springer, New York (2007)

    MATH  Google Scholar 

  7. Ammari, H., Kang, H., Lee, H.: Layer Potential Techniques in Spectral Analysis. Math. Surveys Monogr., vol. 153. AMS, Providence (2009)

    MATH  Google Scholar 

  8. Ammari, H., Kang, H., Lee, H., Park, W.-K.: Asymptotic imaging of perfectly conducting cracks. SIAM J. Sci. Comput. 32, 894–922 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion. J. Elast. 67, 97–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Amstutz, S., Horchani, I., Masmoudi, M.: Crack detection by the topological gradient method. Control Cybern. 34, 81–101 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Beretta, E., Francini, E.: An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities. SIAM J. Math. Anal. 38, 1249–1261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beretta, E., Francini, E., Kim, E., Lee, J.-Y.: Algorithm for the determination of a linear crack in an elastic body from boundary measurements. Inverse Probl. 26, 085015 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. Beretta, E., Francini, E., Vessella, S.: Determination of a linear crack in an elastic body from boundary measurements-Lipschitz stability. SIAM J. Math. Anal. 40, 984–1002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlberg, B.E., Kenig, C.E., Verchota, G.: Boundary value problem for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ioakimidis, N.I.: Application of finite-part integrals to the singular integral equations of crack problems in plane and three-dimensional elasticity. Acta Mech. 45, 31–47 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, H., Kim, E., Lee, J.-Y.: Identification of elastic inclusions and elastic moment tensors by boundary measurements. Inverse Probl. 19, 703–724 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kang, H., Kim, E., Lee, J.-Y.: Numerical reconstruction of a cluster of small elastic inclusions. Inverse Probl. 23, 2311–2324 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kupradze, V.D.: Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  19. Martin, P.A., Rizzo, F.J.: On boundary integral equations for crack problems. Proc. R. Soc. Lond. A 421, 341–355 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Martin, P.A.: Exact solution of a simple hypersingular integral equation. J. Integral Equ. Appl. 4, 197–204 (1992)

    Article  MATH  Google Scholar 

  21. Martin, P.A., Rizzo, F.J.: Hypersingular integrals: how smooth must the density be? Int. J. Numer. Methods Eng. 39, 687–704 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  23. Novotny, A.A., Feijóo, R.A., Taroco, E., Padra, C.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192, 803–829 (2003)

    Article  ADS  MATH  Google Scholar 

  24. Sokolowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sokolowski, J., Żochowski, A.: Topological derivatives of shape functional for elasticity systems. Int. Ser. Numer. Math. 139, 231–244 (2001)

    Google Scholar 

  26. Tricomi, F.G.: Integral Equations. Interscience, New York (1957)

    MATH  Google Scholar 

  27. Van Goethem, N., Novotny, A.A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33, 1978–1994 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Wendland, W.L., Stephan, E.P.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zabreyko, P.P., et al.: Integral Equations: A Reference Text. Noordhoff, Leyden (1975)

    Book  Google Scholar 

Download references

Acknowledgements

Authors would like to thank André Novotny for helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonbae Kang.

Additional information

This work was supported by the ERC Advanced Grant Project MULTIMOD-267184 and NRF grants No. 2009-0085987, 2010-0004091, and 2010-0017532.

Appendix: Derivation of (3.3)

Appendix: Derivation of (3.3)

The Kelvin matrix (2.12) can be rewritten as

(6.1)

where

Using the operator T() defined by (3.2) one can see that

(6.2)

or

(6.3)

We use the formulas

By (6.3), we have

Since Δlog|xy|=0 for xy, we have

Since

we obtain

Similarly, we can compute

Since λ(μ′−λ′)+2μμ′=μ(λ′−μ′), we have

We also have

This proves (3.3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammari, H., Kang, H., Lee, H. et al. Boundary Perturbations Due to the Presence of Small Linear Cracks in an Elastic Body. J Elast 113, 75–91 (2013). https://doi.org/10.1007/s10659-012-9411-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9411-4

Keywords

Mathematics Subject Classification

Navigation