Skip to main content
Log in

Velocities, Stresses and Vector Bundle Valued Chains

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A mathematical framework for the fundamental objects of continuum mechanics is presented. In the geometric setting of general differentiable manifolds, velocity fields over bodies, modeled as sections of a vector bundle W, are generalized using notions of homological integration theory such as flat chains and cochains. The class of bodies includes fractal sets whose irregular boundaries may have infinite measures. Stresses, initially modeled as smooth differential forms valued in the dual of the jet bundle of W, are generalized to cochains represented by L -sections whose weak divergences are also L . The divergence of a stress field, defined in an earlier work, is generalized to apply to stress cochains. The co-divergence of a velocity field is a weak form of the jet extension mapping and it is the counterpart of the boundary operator for real valued flat chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.: Fractals Everywhere. Academic Press, New York (1988)

    MATH  Google Scholar 

  2. Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  3. Capriz, G., Mariano, P.: Symmetries and Hamiltonian formalism for complex materials. J. Elast. 72, 57–70 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Rham, G.: Differentiable Manifolds. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  5. Degiovanni, M., Marzocchi, A., Musesti, A.: Cauchy fluxes associated with tensor fields having divergence measure. Arch. Ration. Mech. Anal. 147, 197–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  7. Federer, H., Fleming, W.: Normal and integral currents. Ann. Math. 72(3), 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations I. Springer, Berlin (1998)

    MATH  Google Scholar 

  9. Gol’dshtein, V., Kuz’minow, V., Shvedov, I.: Integration of differential forms of the classes . Sib. Mat. Zh. 23, 63–79 (1982). English translation published by Plenum

    Google Scholar 

  10. Gol’dshtein, V., Kuz’minow, V., Shvedov, I.: Differential forms on Lipschitz manifolds. Sib. Mat. Zh. 23, 16–30 (1982). English translation published by Plenum

    Google Scholar 

  11. Gol’dshtein, V., Kuz’minow, V., Shvedov, I.: Wolfe’s theorem for differential forms of classes . Sib. Mat. Zh. 24, 31–42 (1983). English translation published by Plenum

    Google Scholar 

  12. Mariano, P.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2002)

    Article  Google Scholar 

  13. Mariano, P.: Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18, 99–141 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Mariano, P., Modica, G.: Ground states in complex bodies. ESAIM Control Optim. Calc. Var. 15, 377–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mermin, N.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–646 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  16. Noll, W.: The foundation of classical mechanics in light of recent advances in continuum mechanics. In: The Axiomatic Method, with Special Reference to Geometry and Physics. North-Holland, Amsterdam (1959)

    Google Scholar 

  17. Palais, R.S.: Foundations of Global Non-Linear Analysis. Benjamin, Elmsford (1968)

    MATH  Google Scholar 

  18. Rodnay, G.: Cauchy’s flux theorem in light of Whitney’s geometric integration theory. Ph.D. thesis, Ben-Gurion University of the Negev (2002)

  19. Rodnay, G., Segev, R.: Cauchy’s flux theorem in light of geometric integration theory. J. Elast. 71, 183–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Segev, R.: Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27, 163–170 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Segev, R.: The geometry of Cauchy’s fluxes. Arch. Ration. Mech. Anal. 154, 183–198 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Segev, R.: Metric-independent analysis of the stress-energy tensor. J. Math. Phys. 43, 3220–3231 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Segev, R., Rodnay, G.: Cauchy’s theorem on manifolds. J. Elast. 56(2), 129–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silhavy, M.: Cauchy’s stress theorem for stresses represented by measures. Contin. Mech. Thermodyn. 20, 75–96 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Silhavy, M.: The divergence theorem for divergence measure vectorfields on sets with fractal boundaries. Math. Mech. Solids 14, 445–455 (2009)

    Article  MathSciNet  Google Scholar 

  26. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Segev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segev, R., Falach, L. Velocities, Stresses and Vector Bundle Valued Chains. J Elast 105, 187–206 (2011). https://doi.org/10.1007/s10659-011-9316-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9316-7

Keywords

Mathematics Subject Classification (2000)

Navigation