Skip to main content
Log in

Secular Equations for Rayleigh and Stoneley Waves in Exponentially Graded Elastic Materials of General Anisotropy under the Influence of Gravity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The Stroh formalism is employed to study Rayleigh and Stoneley waves in exponentially graded elastic materials of general anisotropy under the influence of gravity. The 6×6 fundamental matrix N is no longer real. Nevertheless the coefficients of the sextic equation for the Stroh eigenvalue p are real. The orthogonality and closure relations are derived. Also derived are three Barnett-Lothe tensors. They are not necessarily real. Secular equations for Rayleigh and Stoneley wave speeds are presented. Explicit secular equations are obtained when the materials are orthotropic. In the literature, the secular equations for Stoneley waves in orthotropic materials are obtained without using the Stroh formalism. As a result, it requires computation of a 4×4 determinant. The secular equation presented here requires computation of a 2×2 determinant, and hence is fully explicit. A Rayleigh or Stoneley wave exists in the exponentially graded material under the influence of gravity if the wave can propagate in the homogeneous material without the influence of gravity. As the wave number k→∞, the Rayleigh or Stoneley wave speed approaches the speed for the homogeneous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pal, P.K., Acharya, D.: Effects of inhomogeneity on surface waves in anisotropic media. Sãdhana 23, 247–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Collet, B., Destrade, M., Maugin, G.: Bleustein-Gulyaev waves in some functionally graded materials. Eur. J. Mech. 25, 695–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Destrade, M.: Seismic Rayleigh waves on an exponentially graded, orthotropic elastic half-space. Proc. R. Soc. Lond. A 463, 495–502 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Kulkarni, S.S., Achenbach, J.D.: Application of reciprocity theorem to determine line-loaded generated surface waves on an inhomogeneous transversely isotropic half-space. Wave Motion 45, 350–360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Qian, Z.H., Jin, F., Lu, T.J., Kishimoto, K.: Transverse surface waves in functionally graded piezoelectric materials with exponential variation. Smart Mater. Struct. 17(6), 065005 (2008)

    Article  ADS  Google Scholar 

  6. Eskandari, M., Shodja, H.M.: Love waves propagation in functionally graded piezoelectric materials with quadratic variation. J. Sound Vib. 313(1–2), 195–204 (2008)

    Article  ADS  Google Scholar 

  7. Vinh, P.C., Seriani, G.: Explicit secular equations of Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Wave Motion 46, 427–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, X.S., Jin, F., Wang, Z.K., Lu, T.J.: Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure. Sci. China Phys. Mech. Astron. 52(4), 613–625 (2009)

    Article  ADS  Google Scholar 

  9. Qian, Z.H., Jin, F., Lu, T.J., Kishimoto, K.: Transverse surface waves in a functionally graded piezoelectric substrate coated with a finite-thickness metal waveguide layer. Appl. Phys. Lett. 94(2), 023501 (2009)

    Article  ADS  Google Scholar 

  10. Shuvalov, A.L., Poncelet, O., Golkin, S.V.: Existence and spectral properties of shear horizontal surface acoustic waves in vertically periodic half-spaces. Proc. R. Soc. Lond. A 465, 1489–1511 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Achenbach, J.D., Balogun, O.: Anti-plane surface waves on a half-space with depth-dependent properties. Wave Motion 47, 59–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ting, T.C.T.: Existence of anti-plane shear surface waves in anisotropic elastic half-space with depth-dependent material properties. Wave Motion 47, 350–357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. De, S.N., Sengupta, P.R.: Surface waves under the influence of gravity. Gerlands. Beitr. Geophys. 85, 311–318 (1976)

    Google Scholar 

  14. Dey, S.K., Sengupta, P.R.: Effects of anisotropy on surface waves under the influence of gravity. Acta Geophys. Pol. 24(ZZZ), 291–298 (1978)

    Google Scholar 

  15. De, S.N., Sengupta, P.R.: Plane Lamb’s problem under the influence of gravity. Gerlands Beitr. Geophys. 82, 421–426 (1973)

    Google Scholar 

  16. Abd-Alla, A.M., Ahmad, S.M.: Stoneley and Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Appl. Math. Comput. 135, 187–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vinh, P.C., Seriani, G.: Explicit secular equations of Stoneley waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Appl. Math. Comput. 215, 3515–3525 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ting, T.C.T.: Surface waves in an exponentially graded general anisotropic elastic material under the influence of gravity. Wave Motion (2011, in press)

  19. Stroh, A.N.: Steady state problems in anisotropic elasticity. J. Math. Phys. 4, 77–103 (1962)

    MathSciNet  Google Scholar 

  20. Chadwick, P., Smith, G.D.: Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech. 17, 303–376 (1977)

    Article  MATH  Google Scholar 

  21. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  22. Biot, M.A.: Mechanics of Incremental Deformation. Wiley, New York (1965)

    Google Scholar 

  23. Ingebrigtsen, K.A., Tonning, A.: Elastic surface waves in crystal. Phys. Rev. 184, 942–951 (1969)

    Article  ADS  Google Scholar 

  24. Barnett, D.M., Lothe, J.: Synthesis of the sextic and the integral formalism for dislocations, Greens function and surface waves in anisotropic elastic solids. Phys. Norv. 7, 13–19 (1973)

    Google Scholar 

  25. Chadwick, P., Ting, T.C.T.: On the structure and invariance of the Barnett-Lothe tensors. Q. Appl. Math. 45, 419–427 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Barnett, D.M., Chadwick, P., Lothe, J.: The behaviour of elastic surface waves polarized in a plane of materials symmetry. I. Addendum. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 433, 699–710 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Chadwick, P.: Some remarks on the existence of one-component surface waves in elastic materials with symmetry. Jens Lothe Symp. Vol. Phys. Scr. T 44, 94–97 (1992)

    Article  ADS  Google Scholar 

  28. Ting, T.C.T.: Surface waves in anisotropic elastic materials for which the matrix N(v) is extraordinary degenerate, degenerate, or semisimple. Proc. R. Soc. Lond. A 453, 449–472 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Ting, T.C.T., Barnett, D.M.: Classifications of surface waves in anisotropic elastic materials. Wave Motion 26, 207–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stoneley, R.: Elastic waves at the surface of separation of two solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 106, 416–428 (1924)

    Article  ADS  Google Scholar 

  31. Barnett, D.M., Lothe, J., Musgrave, M.J.P., Gavazza, S.D.: Interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces. Proc. R. Soc. Lond. A 402, 153–166 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Sezawa, K., Kanai, K.: The range of possible existence of Stoneley-waves, and some related problems. Bull. Earthq. Res. Inst. Univ. Tokyo 17, 1–8 (1939)

    MathSciNet  Google Scholar 

  33. Chadwick, P., Borejki, P.: Existence and uniqueness of Stoneley waves. Geophys. J. Int. 118, 279–284 (1994)

    Article  ADS  Google Scholar 

  34. Ting, T.C.T.: Existence of one-component Rayleigh waves, Stoneley waves, Love waves, slip waves and one-component waves in a plate or a layered plate. J. Mech. Mater. Struct. 4(4), 631–647 (2009). The George Herrman Special Issue

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. T. Ting.

Additional information

This paper is dedicated to, and in memory of, Professor Donald E. Carlson.

T.C.T. Ting Professor Emeritus of University of Illinois at Chicago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, T.C.T. Secular Equations for Rayleigh and Stoneley Waves in Exponentially Graded Elastic Materials of General Anisotropy under the Influence of Gravity. J Elast 105, 331–347 (2011). https://doi.org/10.1007/s10659-011-9314-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9314-9

Keywords

Mathematics Subject Classification (2000)

Navigation