Skip to main content
Log in

Weakly nonlocal Rayleigh waves with impedance boundary conditions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the propagation of Rayleigh waves in a nonlocal orthotropic elastic half-space subject to impedance boundary conditions using the weakly nonlocal elasticity model which is introduced recently by the first two authors of the paper. The half-space may be compressible or incompressible. Our main aim is to derive explicit secular equations of Rayleigh waves and based on them examine the effect of nonlocality, impedance boundary conditions and incompressibility on the Rayleigh wave characteristics, such as the velocity and the displacement components at the half-space surface. The secular equation for the compressible half-space is derived using the surface impedance matrix method. The secular equation for the incompressible half-space is then obtained by employing the incompressible limit method. It is shown numerically that: (i) While the Rayleigh wave velocity decreases when increasing the nonlocal and impedance parameters, the incompressibility makes it increasing. (ii) The nonlocality affects very strongly the displacement amplitudes at the half-space’s surface, the incompressibility and the impedance boundary conditions affect them considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abd-Alla, A.M., Abo-Dahab, S.M., Ahmed, S.M., Rashid, M.M.: Effect of magnetic field and voids on Rayleigh waves in a nonlocal thermoelastic half-space. J. Strain Anal. Eng. Des. (2021). https://doi.org/10.1177/03093247211001243

    Article  MATH  Google Scholar 

  2. Anh, V.T.N., Vinh, P.C.: Expressions of nonlocal quantities and application to Stoneley waves in weakly nonlocal orthotropic elastic half-spaces. Math. Mech. Solids (2023). https://doi.org/10.1177/10812865231164332

    Article  Google Scholar 

  3. Biswas, B.: Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space. Acta Mech. 231, 4129–4144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chadwick, P.: The existence of pure surface modes in elastic materials with orthohombic symmetry. J. Sound. Vib. 47, 39–52 (1976)

    Article  MATH  ADS  Google Scholar 

  5. Chebakov, R., Kaplunov, J., Rogerson, G.A.: Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects. Proc. R. Soc. A-Math. Phys. Eng. Sci. 472(2186), 20150800 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Collet, B., Destrade, M.: Explicit secular equations for Piezoacoustic surface waves: shear-horizontal modes. J. Acoust. Soc. Am. 116, 3432–3442 (2020)

    Article  ADS  Google Scholar 

  7. Destrade, M.: The explicit secular equation for surface waves in monoclinic elastic crystals. J. Acoust. Soc. Am. 109, 1398–1402 (2001)

    Article  ADS  Google Scholar 

  8. Duffy, D.G.: Green’s functions with applications. CRC Press,Tayor & Francis Group, NW (2015)

    Book  MATH  Google Scholar 

  9. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  10. Godoy, G., Durn, M., Ndlec, J.-C.: On the existence of surface waves in an 432 elastic half-space with impedance boundary conditions. Wave Motion 49, 585–594 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  11. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  12. Kaplunov, J., Prikazchikov, D.A., Prikazchikova, L.: On non-locally elastic Rayleigh wave. Phil. Trans. R. Soc. A 380(2231), 20210387 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  13. Kaplunov, J., Prikazchikov, D.A., Prikazchikova, L.: On integral and differential formulations in nonlocal elasticity. Eur. J. Mech. A Solids 104497 (2022)

  14. Kaur, G., Singh, D., Tomer, S.K.: Rayleigh-type wave in a nonlocal elastic solid with voids. Eur. J. Mech. A Solids 71, 134–150 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Kaur, B., Singh, B.: Rayleigh-type surface wave in nonlocal isotropic diffusive materials. Acta Mech. 232, 3407–3416 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar solid half-space. Ultrasonics 73, 162–168 (2017)

    Article  Google Scholar 

  17. Lata, P., Singh, S.: Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer. GEM-Int. J. Geomath. 13, 5 (2022). https://doi.org/10.1007/s13137-022-00195-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions: Construction and Applications, p. 10785. Walter de Gruyter GmbH & Co KG, Berlin/Boston (2012)

    Book  MATH  Google Scholar 

  19. Nobili, A., Prikazchikov, D.A.: Explicit formulation for the Rayleigh wave field induced by surface stresses in an orthorhombic half-plane. Eur. J. Mech. A Solids 70, 86–94 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Ogden, R.W., Vinh, P.C.: On Rayleigh waves in incompressible orthotropic elastic solids. J. Acoust. Soc. Am. 115, 530–533 (2004)

    Article  ADS  Google Scholar 

  21. Pramanik, A.S., Biswas, S.: Surface waves in nonlocal thermoelastic medium with state space approach. J. Therm. Stresses 43, 667–686 (2020)

    Article  Google Scholar 

  22. Prikazchikov, D.A.: Rayleigh waves of arbitrary profile in anisotropic media. Mech. Res. Commun. 50, 83–86 (2013)

    Article  Google Scholar 

  23. Rayleigh, L.: On waves propagated along the plane surface of an elastic solid. Proc. R. Soc. Lond. A 17, 4–11 (1885)

    MathSciNet  MATH  Google Scholar 

  24. Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  25. Singh, K.: Rayleigh waves with impedance boundary conditions in a nonlocal micropolar thermoelastic material. J. Phys. Conf. Ser. 1531, 012048 (2020). https://doi.org/10.1088/1742-6596/1531/1/012048

    Article  Google Scholar 

  26. Singh, B.: Propagation of waves in an incompressible rotating transversely isotropic nonlocal solid. Vietnam J. Mech. 43, 237–252 (2021)

    Google Scholar 

  27. Stoneley, R.: The propagation of surface waves in an elastic medium with orthohombic symmetry. Geophys. J. Int. 8, 176–186 (1963)

    Article  Google Scholar 

  28. Taziev, R.M.: Dispersion relation for acoustic waves in an anisotropic elastic half-space. Sov. Phys. Acoust. 35, 535–538 (1989)

    Google Scholar 

  29. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)

    Book  MATH  Google Scholar 

  30. Ting, T.C.T.: Explicit secular equations for surface waves in monoclinic materials with the symmetry plane at \(x_1=0, x_2=0\) or \(x_3=0\). Proc. R. Soc. Lond. A 458, 1017–1031 (2002)

    Article  MATH  ADS  Google Scholar 

  31. Tung, D.X.: Wave propagation in nonlocal orthotropic micropolar elastic solids. Arch. Mech. 73, 237–251 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Tung, D.X.: Surface waves in nonlocal transversely isotropic liquid-saturated porous solid. Arch. Appl. Mech. 91, 2881–2892 (2021)

    Article  ADS  Google Scholar 

  33. Vinh, P.C.: Explicit secular equations of Rayleigh waves in elastic media under the influence of gravity and initial stress. Appl. Math. Compt. 215, 395–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vinh, P.C., Anh, V.T.N., Linh, N.T.K.: Exact secular equations of Rayleigh waves in an orthotropic elastic half-space overlaid by an orthotropic elastic layer. Int. J. Solids Struct. 83, 65–72 (2016)

    Article  Google Scholar 

  35. Vinh, P.C., Hue, T.T.T.: Rayleigh waves with impedance boundary conditions in anisotropic solids. Wave Motion 51, 1082–1092 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Vinh, P.C., Hue, T.T.T.: Rayleigh waves with impedance boundary conditions in incompressible anisotropic half-spaces. Int. J. Eng. Sci. 85, 175–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vinh, P.C., Seriani, G.: Explicit secular equations of Stoneley waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Appl. Math. Compt. 215, 3515–3525 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. White, R.M., Voltmer, F.M.: Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 7, 314–316 (1965)

    Article  ADS  Google Scholar 

  39. Yan, J.W., Liew, K.M., He, L.H.: A higher-order gradient theory for modeling of the vibration behavior of single-wall carbon nanocones. Appl. Math. Model. 38, 2946–2960 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Vu Thi Ngoc Anh was funded by Vingroup JSC and supported by the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF.2022.STS.42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Vinh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, V.T.N., Vinh, P.C., Tuan, T.T. et al. Weakly nonlocal Rayleigh waves with impedance boundary conditions. Continuum Mech. Thermodyn. 35, 2081–2094 (2023). https://doi.org/10.1007/s00161-023-01235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01235-7

Keywords

Navigation