Skip to main content
Log in

Evolution of Surfaces and the Kinematics of Membranes

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The polar decomposition theorem for a two dimensional continuum (a membrane) is used to produce a set of equations that describe the evolution of the geometrical quantities of a moving surface, i.e., the metric, the unit normal, the shape operator, the second fundamental form, the mean and the Gauss curvature. A link to the kinematical quantities of the continuum is also given. The version of the polar decomposition theorem for membranes we use was proved by Chi-Sing Man and H. Cohen (J. Elast. 16:97–104, 1986). Both the geometric and the kinematical framework are coordinate-free, in an attempt to contribute to a coordinate-free description for the kinematics of membranes in analogy to the kinematics of three dimensional continuum bodies as it emerges from the classical works of Noll (Arch. Rat. Mech. Anal. 2:197–226, 1958), Truesdell and Noll (The Non-linear Field Theories of Mechanics, 3rd edn., Springer, Berlin, 2004), Truesdell (A First Course in Rational Continuum Mechanics, vol. 1, Academic Press, San Diego, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. 2, 151–171 (1994)

    Article  MATH  Google Scholar 

  2. Appleby, P.G., Kadianakis, N.: A frame-independent description of the principles of classical mechanics. Arch. Rat. Mech. Anal. 95, 1–22 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Capovilla, R., Guven, J., Santiago, J.A.: Deformations of the geometry of lipid vesicles. J. Phys. A Math. Gen. 36, 6281–6295 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohen, H., Berkal, A.B.: Wave propagation in elastic membranes. J. Elast. 2, 45–57 (1972)

    Article  Google Scholar 

  5. Fosdick, R., Tang, H.: Surface transport in continuum mechanics. Math. Mech. Solids 14, 587–598 (2009)

    Article  Google Scholar 

  6. Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  7. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jost, J.: Riemannian Geometry and Geometric Analysis, 5th edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  9. Kadianakis, N.: On the geometry of Lagrangian and Eulerian descriptions in continuum mechanics. Z. Angew. Math. Mech. 79, 131–138 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Man, C.-S., Cohen, H.: A coordinate-free approach to the kinematics of membranes. J. Elast. 16, 97–104 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  12. Murdoch, A.I.: A coordinate-free approach to surface kinematics. Glasg. Math. J. 32, 299–307 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Murdoch, A.I.: Some fundamental aspects of surface modelling. J. Elast. 80, 33–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Murdoch, A.I., Cohen, H.: Symmetry considerations for material surfaces. Arch. Rat. Mech. Anal. 72, 61–78 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal. 2, 197–226 (1958)

    Article  MATH  Google Scholar 

  16. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 4. Publish or Perish, Boston (1979)

    Google Scholar 

  17. Truesdell, C.: A First Course in Rational Continuum Mechanics, vol. 1. Academic Press, San Diego (1977)

    MATH  Google Scholar 

  18. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  19. Yano, K.: Integral Formulas in Riemannian Geometry. Dekker, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kadianakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadianakis, N. Evolution of Surfaces and the Kinematics of Membranes. J Elast 99, 1–17 (2010). https://doi.org/10.1007/s10659-009-9226-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-009-9226-0

Mathematics Subject Classification (2000)

Navigation