Skip to main content
Log in

Evolution Model for Linearized Micropolar Plates by the Fourier Method

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we justify a two-dimensional evolution and eigenvalue model for micropolar plates starting from three-dimensional linearly micropolar elasticity. A small parameter representing the thickness of the plate-like body is introduced in the problem. The asymptotics of the evolution and eigenvalue problems is then developed as this small parameter tends to zero. First the appropriate convergences of the eigenpairs of the three-dimensional problem to the eigenpairs of the two-dimensional eigenvalue problem for micropolar plates is shown. Then these convergences are used in the Fourier method to obtain the convergences of the solution of the three-dimensional evolution problem to the solution of the two-dimensional evolution plate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganović, I., Tambača, J., Tutek, Z.: Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elast. 84, 131–152 (2006)

    Article  MATH  Google Scholar 

  2. Aganović, I., Tambača, J., Tutek, Z.: Derivation of the model of elastic curved rods from three-dimensional micropolar elasticity. Ann. Univ. Ferrara 53, 109–133 (2007)

    Article  MATH  Google Scholar 

  3. Ciarlet, P.G.: Mathematical Elasticity. Vol. II. Theory of Plates. North-Holland, Amsterdam (1997)

    Google Scholar 

  4. Ciarlet, P.G.: Mathematical Elasticity. Vol. III. Theory of Shells. North-Holland, Amsterdam (2000)

    Google Scholar 

  5. Ciarlet, P.G., Destuynder, P.: A justification of the two dimensional linear plate model. J. Méc. 18, 315–344 (1979)

    MATH  MathSciNet  Google Scholar 

  6. Ciarlet, P.G., Kesavan, S.: Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory. Comput. Methods Appl. Mech. Eng. 26, 145–172 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cosserat, E., Cosserat, F.: Théorie des corps dé formables Librairie Scientifique A. Hermann et Fils (Translation: Theory of deformable bodies, NASA TT F-11 561, 1968), Paris (1909)

  8. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I. Springer, Berlin (2000)

    MATH  Google Scholar 

  9. Erbay, H.: An asymptotic theory of thin micropolar plates. Int. J. Eng. Sci. 38, 1497–1516 (2000)

    Article  MathSciNet  Google Scholar 

  10. Eringen, A.C.: Microcontinuum Field Theories, I: Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  11. Forest, S.: Mechanics of Generalized Continua: Construction by Homogenization. J. Phys. IV 8, 39–48 (1998)

    Article  MathSciNet  Google Scholar 

  12. Green, A.E., Naghdi, P.M.: Micropolar and director theories of plates. Quart. J. Mech. Appl. Math. 20, 183–199 (1967)

    Article  MATH  Google Scholar 

  13. Grubišić, L., Veselić, K.: On weakly formulated Sylvester Equations and Applications. Integr. Equ. Appl. 58, 175–204 (2007)

    MATH  Google Scholar 

  14. Jeong, J., Neff, P.: Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids (2008, to appear). Preprint 2550, http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html

  15. Lakes, R.S.: On the torsional properties of single osteons. J. Biomech. 28, 1409–1410 (1995)

    Article  Google Scholar 

  16. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  17. Neff, P.: A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16(6), 577–628 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Neff, P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. (ZAMM) 86, 892–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MathSciNet  Google Scholar 

  20. Neff, P.: A geometrically exact planar Cosserat shell-model with microstructure. Existence of minimizers for zero Cosserat couple modulus. Math. Methods Appl. Sci. (M3AS) 17(3), 363–392 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Neff, P., Chelminski, K.: A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Γ-convergence. Interfaces Free Bound. 9, 455–492 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Neff, P., Il-Hong, K., Jeong, J.: The Reissner-Mindlin plate is the Γ-limit of Cosserat elasticity. Math. Models Methods Appl. Sci. (2009, to appear). Preprint 2555, http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html

  23. Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature. Preprint 2559, http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html, submitted to ZAMM

  25. Tambača, J.: One-dimensional approximations of the eigenvalue problem of curved rods. Math. Methods Appl. Sci. 24, 927–948 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Tambača, J., Velčić, I.: Evolution model of linear micropolar plate. Ann. Univ. Ferrara 53, 417–435 (2007)

    Article  MATH  Google Scholar 

  27. Tambača, J., Velčić, I.: Derivation of a model of nonlinear micropolar plate. Ann. Univ. Ferrara 54, 319–333 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Tambača.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tambača, J., Velčić, I. Evolution Model for Linearized Micropolar Plates by the Fourier Method. J Elasticity 96, 129–154 (2009). https://doi.org/10.1007/s10659-009-9202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-009-9202-8

Keywords

Mathematics Subject Classification (2000)

Navigation