Skip to main content
Log in

Saint-Venant’s Problem for Compound Piezoelectric Beams

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The solution of the Saint-Venant’s Problem for a slender compound piezoelectric beam presented in this paper generalizes the recent solution by the authors and E. Harash (J. Appl. Mech. 11:1–10, 2007) for a homogeneous piezoelectric beam and the solution for a compound elastic beam developed by O. Rand and the first author (Analytical Methods in Anisotropic Elasticity with Symbolic Computational Tools, Birkhauser, Boston, 2005). Justification for this approximation emerges from the St. Venant’s Principle. The stress, strain and (electrical) displacement components (“solution hypothesis”) are presented as a set of initially assumed expressions involving twelve tip loading parameters, six unknown weight coefficients, and three pairs of torsion/bending functions of two variables. Each pair of functions satisfies the so-called coupled non-homogeneous Neumann problem (CNNP) in the cross-sectional domain. The work develops concepts of the torsion/bending functions, the torsional rigidity and piezoelectric shear center, the tip coupling matrix, for a compound piezoelectric beam. Examples of exact and approximate solutions for rectangular laminated beams made of transtropic materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rand, O., Rovenski, V.: Analytical Methods in Anisotropic Elasticity with Symbolic Computational Tools. Birkhauser, Boston (2005)

    MATH  Google Scholar 

  2. Bisegna, P.: The Saint-Venant problem in the linear theory of piezoelectricity. Atti Conv. Lincei, Accad. Naz. Lincei, Rome 140, 151–165 (1998)

    MathSciNet  Google Scholar 

  3. Bisegna, P.: The Saint-Venant Problem for Monoclinic piezoelectric cylinders. Z. Angew. Math. Mech. 78(3), 147–165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davh, F.: Saint-Venant’s problem for linear piezoelectric bodies. J. Elast. 43, 227–245 (1996)

    Article  Google Scholar 

  5. dell’Isola, F., Rosa, L.: Saint-Venant’s problem in linear piezoelectricity. Math. Control Smart Struct. 2715, 399–409 (1996)

    Google Scholar 

  6. Batra, R., Yang, J.: Saint-Venant’s principle in linear piezoelectricity. J. Elast. 38, 209–218 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Batra, R.: Saint-Venant’s principle for linear elastic porous materials. J. Elast. 39, 265–271 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Batra, R.: Saint-Venant’s principle for a helical piezoelectric body. J. Elast. 43(1), 69–79 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Migórski, S.: Weak solvability of a piezoelectric contact problem. Eur. J. Appl. Math. 20, 145–167 (2009)

    Article  MATH  Google Scholar 

  10. Fernández, J.: Numerical analysis of an elasto-piezoelectric problem with damage. Int. J. Numer. Methods Eng. 77(2), 261–284 (2008)

    Article  Google Scholar 

  11. Borrelli, A.: Saint-Venant’s principle for antiplane shear deformations of linear piezoelectric materials. SIAM J. Appl. Math. 62(6), 2027–2044 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borrelli, A., Patria, M.: Saint-Venant’s principle for a piezoelectric body. SIAM J. Appl. Math. 59(3), 1098–1111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Borrelli, A., Horgan, C., Patria, M.: Saint-Venant end effects for plane deformations of linear piezoelectric solids. Int. J. Solids Struct. 43(5), 943–956 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Borrelli, A., Horgan, C., Patria, M.: Saint-Venant end effects in anti-plane shear for classes of linear piezoelectric materials. J. Elast. 64(2–3), 217–236 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Borrelli, A., Horgan, C., Patria, M.: Saint-Venant’s principle for anti-plane shear deformations of linear piezoelectric materials. J. Appl. Math. 62, 2027–2044 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Borrelli, A., Horgan, C., Patria, M.: End effects for pre-stressed and pre-polarized piezoelectric solids in anti-plane shear. Z. Angew. Math. Phys. (ZAMP) 54, 797–806 (2003)

    Article  MathSciNet  Google Scholar 

  17. Borrelli, A., Horgan, C., Patria, M.: Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proc. R. Soc. Lond. Ser. A 460, 1193–1212 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Davi, F.: Saint-Venant’s problem for linear piezoelectric bodies. J. Elast. 43, 227–245 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lakes, R.: Saint Venant end effects for materials with negative Poisson’s ratios. J. Appl. Mech. 59, 744–746 (1992)

    Article  Google Scholar 

  20. Vidoli, S., Batra, R., dell’Isola, F.: Saint-Venant’s problem for a second-order piezoelectric prismatic bar. Int. J. Eng. Sci. 38, 21–45 (2000)

    Article  MathSciNet  Google Scholar 

  21. Tarn, J.-Q., Huangb, L.-J.: Saint-Venant end effects in multilayered piezoelectric laminates. Int. J. Solids Struct. 39(19), 4979–4998 (2002)

    Article  MATH  Google Scholar 

  22. Xu, X.S., Zhong, W.X., Zhang, H.W.: The Saint-Venant problem and principle in elasticity. Int. J. Solids Struct. 34(22), 2815–2827 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rovenski, V., Abramovich, H.: Saint-Venant’s problem for non-homogeneous piezoelectric beams. TAE Rep. 975, 1–90 (2007)

    Google Scholar 

  24. Rovenski, V., Harash, E., Abramovich, H.: Saint-Venant’s problem for homogeneous piezoelectric beams. J. Appl. Mech. 11, 1–10 (2007)

    Google Scholar 

  25. Saint-Venant, B.: Memoire sur la flexion des prismes. J. Math. Pures Appl. (Liouville). Ser. II 1, 89–189 (1856)

    Google Scholar 

  26. Saint-Venant, B.: Memoire sur la torsion des prismes, Memoires presentes par divers savants a l’academie des sciences. Sci. Math. Phys., Paris 14, 233–560 (1856)

    Google Scholar 

  27. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Moscow, Mir Publ. (1981)

    Google Scholar 

  28. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Groningen, Noordhoff (1953)

    MATH  Google Scholar 

  29. Kudryavtsev, B.A., Parton, V.Z., Senik, N.A.: Electromagnetoelasticity. In: Applied Mechanics: Soviet Reviews, vol. 2, pp. 1–230. Hemisphere, Washington (1990)

    Google Scholar 

  30. Cady, W.G.: Piezoelectricity—An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. Dover, New York (1964), in two volumes

    Google Scholar 

  31. Yang, J.: An Introduction to the Theory of Piezoelectricity. Advances in Mech. and Math., vol. 9. New York, Springer (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Rovenski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovenski, V., Abramovich, H. Saint-Venant’s Problem for Compound Piezoelectric Beams. J Elasticity 96, 105–127 (2009). https://doi.org/10.1007/s10659-009-9201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-009-9201-9

Keywords

Mathematics Subject Classification (2000)

Navigation