Skip to main content
Log in

Invariant Properties for Finding Distance in Space of Elasticity Tensors

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Using orthogonal projections, we investigate distance of a given elasticity tensor to classes of elasticity tensors exhibiting particular material symmetries. These projections depend on the orientation of the elasticity tensor; hence the distance is obtained as the minimization of corresponding expressions with respect to the action of the orthogonal group. These expressions are stated in terms of the eigenvalues of both the given tensor and the projected one. The process of minimization is facilitated by the fact that, as we prove, the traces of the corresponding Voigt and dilatation tensors are invariant under these orthogonal projections. For isotropy, cubic symmetry and transverse isotropy, we formulate algorithms to find both the orientation and the eigenvalues of the elasticity tensor endowed with a particular symmetry and closest to the given elasticity tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arts, R.J., Helbig, K., Rasolofosaon, P.N.J.: General anisotropic elastic tensors in rocks: approximation, invariants and particular directions. In: Expanded Abstracts of 61st Annual International Meeting of Society of Exploration Geophysicists, pp. 1534–1537 (1991)

  2. Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8(3), 633–671 (1970)

    Article  ADS  Google Scholar 

  3. Baerheim, R.: Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46(3), 391–418 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bóna, A., Bucataru, I., Slawinski, M.A.: Coordinate-free characterization of the symmetry classes of elasticity tensors. J. Elast. 87(2–3), 109–132 (2007)

    Article  MATH  Google Scholar 

  5. Chapman, C.M.: Fundamentals of Seismic Wave Propagation. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Cowin, S.C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42(2), 249–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cowin, S.C., Mehrabadi, M.M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40, 451–476 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40(7), 1459–1471 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dellinger, J.: Computing the optimal transversely isotropic approximation of a general elastic tensor. Geophysics. 70(5), I1–I10 (2005)

    Article  Google Scholar 

  10. Dewangan, P., Grechka, V.: Inversion of multicomponent, multiazimuth walkaway VSP data for the stiffness tensor. Geophysics. 68(3), 1022–1031 (2003)

    Article  ADS  Google Scholar 

  11. Fedorov, F.I.: Theory of Elastic Waves in Crystals. Plenum, New York (2006)

    Google Scholar 

  12. François, M., Geymonat, G., Berhaud, Y.: Determination of the symmetries of an experimentally determined stiffness tensor, application to acoustic measurements. Int. J. Solid Struct. 35(31–32), 4091–4106 (1998)

    Article  MATH  Google Scholar 

  13. Gazis, D.C., Tadjbakhsh, I., Toupin, R.A.: The elastic tensor of given symmetry nearest to an anisotropic elastic tensor. Acta Crystallogr. 16, 917–922 (1963)

    Article  MathSciNet  Google Scholar 

  14. Helbig, K.: Die Ausbreitung elastischer Wellen in anisotropen Medien. Geophys. Prospect. 4, 70–81 (1956)

    Article  Google Scholar 

  15. Helbig, K.: Foundation of Anisotropy for Exploration Seismics. Pergamon, Elmsford (1994)

    Google Scholar 

  16. Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82(3), 273–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elastic tensor of lower symmetry. J. Elast. 85(3), 215–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Norris, A.N.: Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. J. Acoust. Soc. Am. 119(4), 2114–2121 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Norris, A.N.: The isotropic material closest to a given anisotropic material. J. Mech. Mater. Struct. 1(2), 2223–2238 (2006)

    Google Scholar 

  21. Rudzki, M.P.: On application of Fermat’s principle to anisotropic media. In: Anisotropy 2000: Fractures, Converted Waves, Case Studies: SEG (Special Issue), pp 13–20 (2000). Translation by Slawinski, M.A. Essai d’application du principe de Fermat aux milieux anisotropes (1913)

  22. Rudzki, M.P.: Parametric representation of the elastic wave in anisotropic media. J. Appl. Geophys. 54, 165–183 (2003). Translation with comments by Helbig, K., Slawinski, M.A. Parametrische Darstellung der elastischen Welle (1911)

    Article  ADS  Google Scholar 

  23. Rychlewski, J.: On Hooke’s law. Prikl. Mat. Meh. 48(3), 303–314 (1984)

    MathSciNet  Google Scholar 

  24. Rychlewski, J.: Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149–171 (1995)

    MATH  MathSciNet  Google Scholar 

  25. Thomson, W.: (Lord Kelvin) Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. 156, 481–498 (1856)

    Article  Google Scholar 

  26. Thomson, W.: (Lord Kelvin) Mathematical and Physical Papers. Elasticity, Heat, Electromagnetism, vol. 3. Cambridge University Press, Cambridge (1890)

    Google Scholar 

  27. Thomsen, L.: Weak elastic anisotropy. Geophysics (1986)

  28. Voigt, W.: Lehrbuch der Kristallphysics. Teubner, Leipzig (1910)

    Google Scholar 

  29. Walpole, L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond. A 391, 149–179 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Bucataru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucataru, I., Slawinski, M.A. Invariant Properties for Finding Distance in Space of Elasticity Tensors. J Elasticity 94, 97–114 (2009). https://doi.org/10.1007/s10659-008-9186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-008-9186-9

Keywords

Mathematics Subject Classification (2000)

Navigation