Skip to main content
Log in

Pure Strain Deformations of Surfaces

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The goal of this paper is to study pure strain deformations of deformable surfaces, i.e., deformations deprived of rotations in the sense of the polar decomposition theorem. The problem is treated with the broader class of general pure strain maps in the background. It is shown that determination of all pure strain deformations of a given surface reduces to a single second-order quasi-linear PDE. It is also proved that this problem is equivalent to a geometrical problem of finding all surfaces with a given third fundamental form (the inverse of the Gauss map) and prescribed lines of principal curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szwabowicz, M.L.: Deformable surfaces and almost inextensional deflections of thin shells. Habilitation thesis, Zeszyty Naukowe IMP PAN Nr. 501/1490/99, Gdańsk (1999)

  2. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  3. Leigh, D.C.: Nonlinear Continuum Mechanics. McGraw-Hill Advanced Engineering Series, McGraw-Hill Book Co., New York (1968)

    Google Scholar 

  4. Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, New York (1960)

    Google Scholar 

  5. Halmos, P.R.: Finite-Dimensional Vector Spaces. Springer (1974)

  6. Simmonds, J.G., Danielson, D.A.: Nonlinear shell theory with a finite rotation vector. Kon. Ned. Ak. Wed. B73, 460–478 (1970)

    MathSciNet  Google Scholar 

  7. Simmonds, J.G., Danielson, D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. J. Appl. Mech. 46, 1085–1090 (1972)

    Google Scholar 

  8. Pietraszkiewicz, W.: Finite rotations in the nonlinear theory of thin shells. In: Olszak, W. (ed.) Thin Shell Theory: New Trends and Applications, CISM Courses and Lectures No. 240, vol. 19, pp. 155–208, International Centre for Mechanical Sciences. Springer, Wien (1980)

  9. Pietraszkiewicz, W.: Finite Rotations and Lagrangean Description in the Nonlinear Theory of Shells. Polish Scie. Publ., Warszawa (1979)

    Google Scholar 

  10. Szwabowicz, M.L.: Compatibility of rotations with the change-of-metric measures in a deformation of a material surface. In: Pietraszkiewicz, W. (ed.) Finite Rotations in Structural Mechanics, Lecture Notes in Engng, vol. 19, pp. 306–316, Springer, Berlin (1986), Proceedings of the Euromech Colloquium 197. Jabłonna, Poland (1985)

  11. Felippa, C.A.: A systematic approach to the element-independent corotational dynamics of finite elements. Report No. CU-CAS-00-03, Center for Aerospace Structures. Boulder, Colorado (2000)

  12. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1974/75)

    MathSciNet  Google Scholar 

  13. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/1, pp. 226–790. Springer, Berlin (1960)

    Google Scholar 

  14. Cartan, É.: Sur surfaces qui admettent une seconde forme fondamental donnée. In: Oeuvres complètes, pp. 1591–1620, CNRS. Paris (1984)

  15. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge, 2nd edn. (1998)

    MATH  Google Scholar 

  16. Makowski, J., Pietraszkiewicz, W.: Work-conjugate boundary conditions in the nonlinear theory of thin shells. J. Appl. Mech. 56, 395–402 (1989)

    Article  MATH  Google Scholar 

  17. Pietraszkiewicz, W.: Lagrangian description and incremental formulation in the non-linear theory of thin shells. Int. J. Non-Linear Mech. 19(2), 115–140 (1984)

    Article  MATH  ADS  Google Scholar 

  18. Pietraszkiewicz, W., Szwabowicz, M.L.: Entirely Lagrangian nonlinear theory of shells. Arch. Mech. 33(2), 273–286 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Szwabowicz, M.L.: Variational formulation in the geometrically nonlinear thin elastic shell theory. Int. J. Solids Struct. 22(11), 1161–1175 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Szwabowicz, M.L.: Pure strain deformations of thin shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Proc. of the 8th SSTA Conference, Jurata, Poland, 12–14 October 2005. Shell Structures: Theory and Applications, pp. 175–178. Taylor & Francis, London (2006)

  21. Flügge, W.: Tensor Analysis and Continuum Mechanics. Springer, Berlin (1972)

    MATH  Google Scholar 

  22. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ (1976)

    Google Scholar 

  23. Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Berkeley, 2nd edn. (1979)

    Google Scholar 

  24. Hoger, A., Carlson, D.E.: Determination of the stretch and rotation in polar decomposition of the deformation gradient. Q. Appl. Math. 42(1), 113–117 (1984)

    MATH  MathSciNet  Google Scholar 

  25. Szwabowicz, M.L.: Kinematics of deformation of a material surface in ordinary space. Applied Mathematics Report No. RM-91-05, Department of Applied Mathematics, School of Engineering and Applied Science. University of Virginia, Charlottesville, Virginia (1991)

  26. Szwabowicz, M.L.: Reduced evolution equations for general motion of surfaces. Phys. Lett. A 247, 93–104 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek L. Szwabowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szwabowicz, M.L. Pure Strain Deformations of Surfaces. J Elasticity 92, 255–275 (2008). https://doi.org/10.1007/s10659-008-9161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-008-9161-5

Keywords

Mathematics Subject Classifications (2000)

Navigation