Skip to main content
Log in

Relations Between Relaxation Modulus and Creep Compliance in Anisotropic Linear Viscoelasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The results obtained previously for scalar and class P completely monotone relaxation moduli are extended to arbitrary anisotropy. It is shown for general anisotropic viscoelastic media that, if the relaxation modulus is a locally integrable completely monotone function, then the creep compliance is a Bernstein function and conversely. The elastic and equilibrium limits of the two material functions are related to each other. The relaxation modulus or its derivative can be singular at 0. A rigorous general formulation of the relaxation spectrum in an anisotropic viscoelastic medium is given. The effect of Newtonian viscosity on creep compliance is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderssen, R.S., Loy, R.J.: Rheological implications of completely monotone fading memory. J. Rheol. 46, 1459–1472 (2002)

    Article  ADS  Google Scholar 

  2. Bernstein, B., Kearsley, E.A., Zapas, L.J.: A study of stress relaxation with finite strains. Trans. Soc. Rheol. 7, 391–410 (1963)

    Article  Google Scholar 

  3. Bland, D.R.: The Theory of Linear Viscoelasticity. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  4. Carcione, J.M., Cavallini, F., Helbig, K.: Anisotropic attenuation and material symmetry. Acustica – Acta Acustica 84, 495–502 (1996)

    Google Scholar 

  5. Desch, W., Grimmer, R.: Propagation of singularities for integrodifferential equations. J. Differ. Equ. 65, 411–426 (1965)

    Article  MathSciNet  Google Scholar 

  6. Fung, Y.C.: Biomechanics. Mechanical Properties of Living Tissues, 2nd edn. Springer-Verlag, New York (1993)

    Google Scholar 

  7. Gripenberg, G., Londen, S.O., Staffans, O.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  8. Hanyga, A.: An anisotropic Cole–Cole model of seismic attenuation. In: Shang, E.-C., et al. (eds.) Theoretical and Computational Acoustics 2001, 319–334, World-Scientific, Singapore (2002), Proc. of the 5th International Conference on Computational and Theoretical Acoustics, Beijing, 21–25 May 2001

  9. Hanyga, A.: Anisotropic viscoelastic models with singular memory. J. Appl. Geophys. 54, 411–425 (2003)

    Article  ADS  Google Scholar 

  10. Hanyga, A.: Well-posedness and regularity for a class of linear thermoviscoelastic materials. Proc. R. Soc. Lond. A 459, 2281–2296 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Hanyga, A.: Physically acceptable viscoelastic models. In: Hutter, K., Wang, Y. (eds.) Trends in Applications of Mathematics to Mechanics, pp. 125–136. Shaker Verlag GmbH, Germany (2005)

    Google Scholar 

  12. Hanyga, A.: Realizable constitutive equations in linear viscoelasticity. In: Tenreiro-Machado, J.A., et al. (eds.) Fractional derivatives and their applications, Part 2: Econophysics, Mechanics, Material Modeling, Thermal Systems, Electronics, Electrical Systems, pp. 353–364, UBooks Verlag, Neusäss (2005)

    Google Scholar 

  13. Hanyga, A.: Viscous dissipation and completely monotone stress relaxation functions. Rheol. Acta 44, 614–621 (2005) doi:10.1007/s00397-005-0443-6

    Article  Google Scholar 

  14. Hanyga, A.: Fractional-order relaxation laws in non-linear viscoelasticity. Contin. Mech. Thermodyn. (2007) doi:10.1007/s00161-007-0042-0

  15. Hanyga, A., Seredyńska, M.: Multiple-integral viscoelastic constitutive equations. Int. J. NonLinear Mechanics (2007) doi:10.1016/j.ijnonlinmec.2007.02.003

  16. Jurlewicz, A., Weron, K.: A relationship between asymmetric Lévy-stable distributions in dielectric susceptibility. J. Stat. Phys. 73, 69–81 (1993)

    Article  MATH  ADS  Google Scholar 

  17. König, H., Meixner, J.: Lineare Systeme und lineare Transformationen. Math. Nachr. 19, 265–322 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lokshin, A.A., Rok, V.E.: Automodel solutions of wave equations with time lag. Russ. Math. Surv. 33, 243–244 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic materials. Quart. J. Mech. Appl. Math. 43, 15–41 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meixner, J.: On the theory of linear passive systems. Arch. Ration. Mech. Anal. 17, 278–296 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Molinari, A.: Viscoélasticité linéaire and functions complètement monotones. J. de mécanique 12, 541–553 (1975)

    MathSciNet  Google Scholar 

  22. Renardy, M.: Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids. Rheol. Acta 21, 251–254 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rouse Jr, P.J.: The theory of linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953)

    Article  ADS  Google Scholar 

  24. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1986)

    Google Scholar 

  25. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  26. Zemanian, A.H.: Realizability Theory for Continuous Linear Systems. Academic Press, New York (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Hanyga.

Additional information

Put some makeup on him and lay him to rest. Anonymous

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyga, A., Seredyńska, M. Relations Between Relaxation Modulus and Creep Compliance in Anisotropic Linear Viscoelasticity. J Elasticity 88, 41–61 (2007). https://doi.org/10.1007/s10659-007-9112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-007-9112-6

Keywords

Mathematics Subject Classification (2000)

Navigation