Abstract
The closest tensors of higher symmetry classes are derived in explicit form for a given elasticity tensor of arbitrary symmetry. The mathematical problem is to minimize the elastic length or distance between the given tensor and the closest elasticity tensor of the specified symmetry. Solutions are presented for three distance functions, with particular attention to the Riemannian and log-Euclidean distances. These yield solutions that are invariant under inversion, i.e., the same whether elastic stiffness or compliance are considered. The Frobenius distance function, which corresponds to common notions of Euclidean length, is not invariant although it is simple to apply using projection operators. A complete description of the Euclidean projection method is presented. The three metrics are considered at a level of detail far greater than heretofore, as we develop the general framework to best fit a given set of moduli onto higher elastic symmetries. The procedures for finding the closest elasticity tensor are illustrated by application to a set of 21 moduli with no underlying symmetry.
Article PDF
References
Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82, 273–296 (2006)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the Log-Euclidean framework. In: Duncan, J., Gerig, G. (eds.) Proc. 8th International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Part I, vol. 3749 of LNCS, Palm Springs, California, pp. 115–122. Springer, Berlin Heidelberg New York (2005)
Gazis, D.C., Tadjbakhsh, I., Toupin, R.A.: The elastic tensor of given symmetry nearest to an anisotropic elastic tensor. Acta Crystallogr. 16, 917–922 (1963)
Fedorov, F.I.: Theory of Elastic Waves in Crystals. Plenum, New York (1968)
Norris, A.N.: Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. J. Acoust. Soc. Am. 119, 2114–2121 (2006)
Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43, 81–108 (1996)
François, M., Geymonat, G., Berthaud, Y.: Determination of the symmetries of an experimentally determined stiffness tensor, application to acoustic measurements. Int. J. Solids Struct. 35(31–32), 4091–4106 (1998)
Arts, R.J., Helbig, K., Rasolofosaon, P.N.J.: General anisotropic elastic tensors in rocks: approximation, invariants and particular directions. In: Expanded Abstracts, 61st Annual International Meeting, Society of Exploration Geophysicists, ST2.4, pp. 1534–1537. Society of Exploration Geophysicists, Tulsa, Oklahoma (1991)
Helbig, K.: Representation and approximation of elastic tensors. In: Fjaer, E., Holt, R.M., Rathore, J.S. (eds.) Seismic Anisotropy, pp. 37–75. Society of Exploration Geophysicists, Tulsa, Oklahoma (1996)
Cavallini, F.: The best isotropic approximation of an anisotropic Hooke’s law. Boll. Geofis. Teor. Appl. 40, 1–18 (1999)
Gangi, A.F.: Fourth-order elastic-moduli tensors by inspection. In: Ikelle, L., Gangi, A.F. (eds.) Anisotropy 2000: Fractures, Converted Waves and Case Studies. Proc. 9th International Workshop on Seismic Anisotropy (9IWSA), pp. 1–10. Society of Exploration Geophysicists, Tulsa, Oklahoma (2000)
Rychlewski, J.: On Hooke’s law. Prikl. Mat. Meh. 48, 303–314 (1984)
Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40, 1459–1471 (1992)
Browaeys, J.T., Chevrot, S.: Decomposition of the elastic tensor and geophysical applications. Geophys. J. Int. 159, 667–678 (2004)
Dellinger, J.: Computing the optimal transversely isotropic approximation of a general elastic tensor. Geophysics 70, I1–I10 (2005)
Dellinger, J., Vasicek, D., Sondergeld, C.: Kelvin notation for stabilizing elastic-constant inversion. Rev. Inst. Fr. Pét. 53, 709–719 (1998)
Norris, A.N.: The isotropic material closest to a given anisotropic material. J. Mech. Materials Struct. 1, 223–238 (2006)
Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001)
Walpole, L.J.: Fourth rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. A. A391, 149–179 (1984)
Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43, 15–41 (1990)
Musgrave, M.J.P.: Crystal Acoustics. Acoustical Society of America, New York (2003)
Lang, S.: Fundamentals of Differential Geometry. Springer, Berlin Heidelberg New York (1998)
Bhatia, R.: Matrix Analysis. Springer, Berlin Heidelberg New York (1997)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)
Thomson, W.: Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. Lond. 146, 481–498 (1856)
Sutcliffe, J.: Spectral decomposition of the elasticity tensor. J. Appl. Mech. ASME 59, 762–773 (1993)
Theocaris, P.S., Sokolis, D.P.: Spectral decomposition of the compliance fourth-rank tensor for orthotropic materials. Arch. Appl. Mech. 70, 289–306 (2000)
Kunin, I.A.: Elastic Media with Microstructure. Springer, Berlin Heidelberg New York (1982)
Surrel, Y.: A new description of the tensors of elasticity based upon irreducible representations. Eur. J. Mech. A, Solids 12, 219–235 (1993)
Forte, S., Vianello, M.: Functional bases for transversely isotropic and transversely hemitropic invariants of elasticity tensors. Q. J. Mech. Appl. Math. 51, 543–552 (1998)
Xiao, H.: Invariant characteristic representations for classical and micropolar anisotropic elasticity tensors. J. Elast. 40, 239–265 (1995)
Xiao, H.: On symmetries and anisotropies of classical and micropolar linear elasticities: a new method based upon a complex vector basis and some systematic results. J. Elast. 49, 129–162 (1998)
Bóna, A., Bucataru, I., Slawinski, A.: Characterization of elasticity-tensor symmetries using SU(2). J. Elast. 75, 267–289 (2004)
Bóna, A., Bucataru, I., Slawinski, A.: Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math. 57, 583–598 (2004)
Cowin, S.C., Mehrabadi, M.M.: Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48, 247–285 (1995)
Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8, 633–671 (1970)
Cowin, S.C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42, 249–266 (1989)
Baerheim, R.: Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46, 391–418 (1993)
Zou, W.N., Zheng, Q.S.: Maxwell’s multipole representation of traceless symmetric tensors and its application to functions of high-order tensors. Proc. R. Soc. A. A459, 527–538 (2003)
Baerheim, R., Helbig, K.: Decomposition of the anisotropic elastic tensor in base tensors. Can. J. Explor. Geophys. 29, 41–50 (1993)
Smith, G.F., Rivlin, R.S.: Stress deformation relations for anisotropic solids. Arch. Ration. Mech. Anal. 1, 107–112 (1957)
Tu, Y.-O.: The decomposition of an anisotropic elastic tensor. Acta Crystallogr. A24, 273–282 (1968)
Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed) Continuum Physics, vol. 1. Academic, New York (1971)
Betten, J.: Integrity basis for a second-order and a fourth-order tensor. Int. J. Math. Math. Sci. 5, 87–96 (1981)
Xiao, H.: On anisotropic invariants of a symmetric tensor: crystal classes, quasi-crystalclasses and others. Proc. R. Soc. A. 454, 1217–1240 (1998)
Elata, D., Rubin, M.B.: A new representation for the strain energy of anisotropic elastic materials with application to damage evolution in brittle materials. Mech. Mater. 19, 171–192 (1995)
François, M., Berthaud, Y., Geymonat, G.: Une nouvelle analyse des symétries d’un matériau élastique anisotrope. exemple d’utilisation à partir de mesures ultrasonores. C. R. Acad. Sci. Paris, II 322, 87–94 (1996)
Cowin, S.C., Mehrabadi, M.M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40, 451–476 (1987)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Moakher, M., Norris, A.N. The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry. J Elasticity 85, 215–263 (2006). https://doi.org/10.1007/s10659-006-9082-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10659-006-9082-0