Skip to main content
Log in

Ellipsoidal Domains: Piecewise Nonuniform and Impotent Eigenstrain Fields

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In association with multi-inhomogeneity problems, a special class of eigenstrains is discovered to give rise to disturbance stresses of interesting nature. Some previously unnoticed properties of Eshelby’s tensors prove useful in this accomplishment. Consider the set of nested similar ellipsoidal domains {Ω1, Ω2,⋯,Ω N+1}, which are embedded in an infinite isotropic medium. Suppose that

$$\Omega_{t}=\{\; {\textbf{x}} \mid {\textbf{x}} \in \mathbb{R}^{3} , \quad \sum_{p=1}^3\frac{x_{p}^2}{a_{p}^{2}}\leqslant\xi_{t}^2 \;\},$$

in which \(0\leqslant\xi_{1} < \xi_{2} < \cdots < \xi_{N+1}\) and ξ t a p , p=1,2,3 are the principal half axes of Ω t . Suppose, the distribution of eigenstrain, ε ij *(x) over the regions Γ t t+1−Ω t , t=1,2,⋯,N can be expressed as

$$\epsilon_{ij}^{*} \left( {\textbf{x}} \right)=\begin{cases} f_{ijkl \cdots m }^{(t)}\biggl( \sum\limits_{p=1}^3\dfrac{ x_{p}^2 }{a_{p}^{2}} \biggr) \;x_{k}x_{l} \cdots x_{m}, \qquad {\textbf{x}} \in \Gamma_{t},\\ \quad 0, \qquad\qquad\qquad\qquad\qquad\ \qquad {\textbf{x}} \in \Omega_1\bigcup \left(\mathbb{R}^3-\Omega_{N+1}\right), \end{cases}$$
(‡)

where x k x l x m is of order n, and f ijklm (t) represents 3N(n+2)(n+1) different piecewise continuous functions whose arguments are ∑ p=1 3 x p 2 /a p 2. The nature of the disturbance stresses due to various classes of the piecewise nonuniform distribution of eigenstrains, obtained via superpositions of Eq. () is predicted and an infinite number of impotent eigenstrains are introduced. The present theory not only provides a general framework for handling a broad range of nonuniform distribution of eigenstrains exactly, but also has great implications in employing the equivalent inclusion method (EIM) to study the behavior of composites with functionally graded reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhof, The Hague, The Netherlands (1982)

    Google Scholar 

  2. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A. 241, 376–396 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A. 252, 561–569 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Eshelby, J.D.: Elastic inclusions and inhomogeneities. In: Seneddon, I.N., Hil, R. (eds.) Progress in Solid Mechanics, vol. 2, pp. 89–140. North-Holland, Amsterdam, The Netherlands (1961)

    Google Scholar 

  5. Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49, S118–S127 (1996)

    Article  Google Scholar 

  6. Moschovidis, Z.A., Mura, T.: Two-ellipsoidal inhomogeneities by the equivalent inclusion method. J. Appl. Mech. 42, 847–852 (1975)

    MATH  Google Scholar 

  7. Furuhashi, R., Mura, T.: On the equivalent inclusion method and impotent eigenstrains. J. Elast. 9, 263–270 (1979)

    Article  Google Scholar 

  8. Hori, M., Nemat-Nasser, S.: Double-inclusion model and overal moduli of multi-phase composites. Mech. Mater. 14, 189–206 (1993)

    Article  Google Scholar 

  9. Shodja, H.M., Sarvestani, A.S.: Elastic fields in double inhomogeneity by the equivalent inclusion method. J. Appl. Mech. 68, 3–10 (2001)

    Article  MATH  Google Scholar 

  10. Shodja, H.M., Rad, I.Z., Soheilifard, R.: Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method. J. Mech. Phys. Solids 51, 945–960 (2003)

    Article  MATH  ADS  Google Scholar 

  11. Shodja, H.M., Roumi, F.: Overal behavior of composites with periodic multi-inhomogeneities. Mech. Mater. 37, 343–353 (2005)

    Article  Google Scholar 

  12. Luo, H.A., Weng, G.J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori–Tanaka’s method. Mech. Mater. 6, 347–361 (1987)

    Article  Google Scholar 

  13. Luo, H.A., Weng, G.J.: On Eshelby’s s-tensor in a three-phase cylindrically concentric solid, and the elastic moduli of fiber reinforced composites. Mech. Mater. 8, 77–88 (1989)

    Article  Google Scholar 

  14. Sharma, P., Sharma, R.: On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. J. Appl. Mech. 70, 418–425 (2003)

    Article  MATH  Google Scholar 

  15. Ferres, N.M.: On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae and elliptic rings of variable densities. Q. J. Pure Appl. Math. 14, 1–22 (1877)

    Google Scholar 

  16. Dyson, F.W.: The potentials of ellipsoids of variable densities. Q. J. Pure Appl. Math. XXV, 259–288 (1891)

    Google Scholar 

  17. Hill, R.: Discontinuity relations in mechanics of solids. In: Seneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 2, pp. 245–276. North-Holland, Amsterdam, The Netherlands (1961)

    Google Scholar 

  18. Walpole, L.J.: The elastic field of an inclusion in an anisotropic medium. Proc. R. Soc. A. 300, 270–289 (1967)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein M. Shodja.

Additional information

The paper is dedicated to professor Toshio Mura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shodja, H.M., Shokrolahi-Zadeh, B. Ellipsoidal Domains: Piecewise Nonuniform and Impotent Eigenstrain Fields. J Elasticity 86, 1–18 (2007). https://doi.org/10.1007/s10659-006-9077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9077-x

Key words

Mathematics Subject Classification (2000)

Navigation