Skip to main content
Log in

NonLinearly Elastic Membrane Model For Heterogeneous Shells by Using a New Double Scale Variational Formulation: A Formal Asymptotic Approach

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper is concerned with the asymptotic analysis of shells with periodically rapidly varying heterogeneities. The asymptotic analysis is performed when both the periods of changes of the material properties and the thickness of the shell are of the same orders of magnitude. We consider a shell made of Saint Venant–Kirchhoff type materials for which we justify a new two-scale variational formulation. We assume that both the data and the displacement field admit a formal asymptotic expansion with a negative order of the leading term. We prove that the lowest order term of the displacement field must be of order zero. When the space of nonlinear inextensional displacement is reduced to \(\left\{ 0\right\} \), this displacement field is a solution of a two-dimensional membrane model which is obtained by solving two coupled problems. The first, posed on the middle surface of the shell is two-dimensional and global and the second, posed on the periodicity cell, is three-dimensional and local.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciarlet, P.G.: Introduction to linear shell theory. In: Lions, J.L., Ciarlet, P.G. (eds.) Series in Applied Mathematics I. Gauthier-Villars & Elsevier, Paris (1998)

  2. Miara, B.: Nonlinearly elastic shell models: A formal asymptotic approach I. The membrane model. Arch. Ration. Mech. Anal. 142, 331–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lods, V., Miara, B.: Nonlinearly elastic shell models: A formal asymptotic approach II. The flexural model. Arch. Ration. Mech. Anal. 142, 355–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collard, C., Miara, B.: Asymptotic analysis of the stresses in thin elastic shells. Arch. Ration. Mech. Anal. 148, 233–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lewiński, T., Telega, J.J.: Plates, Laminates and Shells: Asymptotic Analysis and Homogenization. World Scientific, Singapore, New Jersey, London, HongKong (2000)

    MATH  Google Scholar 

  6. Duvaut, G., Metellus, A.M.: Homogénéisation d'une plaque mince en flexion des structures périodiques et symétriques. C. R. Acad. Sci. Paris, Ser. A 283, 947–950 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Lewiński, T., Telega, J.J.: Asymptotic method of homogenization of two models of elastic shells. Arch. Mech. 40(5–6), 705–723 (1988)

    MATH  Google Scholar 

  8. Caillerie, D., Sanchez-Palencia, E.: Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases. Math. Methods Appl. Sci. 5, 473–496 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pruchnicki, E.: Nonlinearly elastic membrane model for heterogeneous plates: A formal asymptotic approach by using a new double scale variationnal formulation. Int. J. Eng. Sci. 40, 2183–2202 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lewiński, T.: Effective models of composite periodic plates. I. Asymptotic solution. Int. J. Solids Struct. 27, 1173–1184 (1991)

    Article  MATH  Google Scholar 

  11. Caillerie, D.: Thin elastic and periodic plates. Math. Models Methods Appl. Sci. 6, 159–191 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: Mathematical Elasticity, vol. 2. In: Lions, J.L., Papanicolaou, G., Fujita, H., Keller, H.B. (eds.) Theory of Plates. Students in Mathematics and its Applications 27. Elsevier. North-Holland, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo. The Netherlands (1997)

  13. Caillerie, D.: The effect of a thin inclusion of high rigidity in an elastic body. Math. Models Methods Appl. Sci. 2, 251–270 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bakhvalov Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Mathematics and Its Applications Nauka, Moscow 1984 in Russian, English, transl. Kluwer, Dordrecht, Boston, London (1989)

  15. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM. J. Math. Anal. 23, 608–623 (1989)

    Article  MathSciNet  Google Scholar 

  16. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23.6, 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  17. Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2, 35–86 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Marušić, S., Marušić-Paloka, E.: Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics. Asymptot. Anal. 23, 23–57 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Attouch, H.: Variational Convergence for Functions and Operators. Pitman Adv. Publ. Program, Boston, London, Melbourne (1984)

    MATH  Google Scholar 

  20. Dal Maso, G.: An Introduction to \(\Gamma\)-convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  21. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967)

    Google Scholar 

  22. Ciarlet, P.G., Paumier, J.C.: A justification of the Marguerre–von Kármán equations. Comput. Mech. 1, 177–202 (1986)

    Article  MATH  Google Scholar 

  23. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ration. Mech. Anal. 136, 119–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mardare, C.: Asymptotic analysis of linearly elastic shells: Error estimates in the membrane case. Asymptot. Anal. 17, 31–51 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Ciarlet, P.G.: Mathematical Elasticity, vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Book  Google Scholar 

  26. Lions, J.L.: Some Methods in the Mathematical Analysis of Systems and Their Control. Gordon and Breach Science, New York (1981)

    MATH  Google Scholar 

  27. Fox, D.D., Raoult, A., Simo, J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124, 157–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Dret, H.: Problémes variationnels dans les multi-domaines. Reseach Notes in Applied Mathematics. Masson, Paris (1991)

    Google Scholar 

  29. Rudin, W.: Real and Complex Analysis. Mc Graw-Hill Book Company, New York (1987)

    MATH  Google Scholar 

  30. Dauge, M., Gruais, I.: Développement asymptotique d'ordre arbitraire pour une plaque élastique mince encastrée. C. R. Acad. Sci. Paris, Ser. I. 321, 375–380 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Dauge, M., Gruais, I.: Asymptotics of arbitrary order for a thin elastic clamped plate. I: Optimal error estimates. Asymptot. Anal. 13, 167–197 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Pruchnicki, E.: Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. Acta Mech. 129, 139–162 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pruchnicki, E.: Overall properties of thin hyperelastic plate at finite strain with edge effects using asymptotic method. Int. J. Eng. Sci. 36, 973–1000 (1998)

    Article  MathSciNet  Google Scholar 

  34. Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: A variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shu, Y.C.: Heterogeneous thin films of martensitic materials. Arch. Ration. Mech. Anal. 153, 39–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells: ‘Generalized membrane shells’. J. Elast. 43, 147–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miara, B.: Justification of the asymptotic analysis of elastic plates. I. The linear case. Asymptot. Anal. 9, 47–60 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Miara, B.: Justification of the asymptotic analysis of elastic plates. II. The nonlinear case. Asymptot. Anal. 9, 119–134 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Friesecke, G., James, R.D., Müller, S.: The Föppl–von Kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. C. R. Acad. Sci. Paris, Ser. I. 335, 201–206 (2002)

    MATH  Google Scholar 

  41. Kohn, R.V., Vogelius, M.: A new model for thin plates with rapidly varying thickness. Int. J. Solids. Struct. 20, 333–350 (1984)

    Google Scholar 

  42. Kohn, R.V., Vogelius, M.: A new model for thin plates with rapidly varying thickness. II. A convergence proof. Quart. Appl. Math. XLIII: 1–22 (1985)

    Google Scholar 

  43. Kalamkarov, A.L.: Composite and Reinforced Elements of Construction. Wiley, Chichester, New York, Brisbane, Toronto, Singapore (1992)

    Google Scholar 

  44. Busse, S., Ciarlet, P.G., Miara, B.: Justification d'un modéle linéaire bi-dimensionnel de coques “faiblement courbées” en coordonnées curvilignes. Math. Modelling Numer. Anal. 31, 409–434 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Andreoiu, G., Faou, E.: Complete asymptotics for shallow shells. Asymptot. Anal. 25, 239–270 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Miara, B., Sanchez-Palencia, E.: Asymptotic analysis of linearly elastic shells. Asymptot. Anal. 12, 41–54 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Ciarlet, P.G., Lods, V., Miara, B.: Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations. Arch. Ration. Mech. Anal. 136, 163–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. LV, 1461–1506 (2002)

    Article  Google Scholar 

  49. Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-Convergence. C. R. Acad. Sci. Paris, Ser. I 336, 697–702 (2002)

    Google Scholar 

  50. Sanchez-Hubert, J., Sanchez-Palencia, E.: Introduction aux méthodes asymptotiques et à l'homogénéisation. Masson, Paris, Milan, Barcelone, Bonn (1997)

    Google Scholar 

  51. Giroud, P.: Analyse asymptotique de coques inhomogènes en élasticité linéarisé anisotrope. C. R. Acad. Sci. Paris, Ser. I 327, 1011–1114 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Pantz, O.: Dérivation des modèles de plaques membranaires non linéaires à partir de l'élasticité tri-dimensionnelle. C. R. Acad. Sci. Paris, Ser. I 331, 171–174 (2000)

    MathSciNet  MATH  Google Scholar 

  53. Pantz, O.: Quelques problèmes de modélisation en élasticité non linéaire. PHD thesis. University of Paris VI (2001)

  54. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's Shell Equations. Arch. Ration. Mech. Anal. 136, 191–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ciarlet, P.G., Roquefort, A.: Justification of a two-dimensional nonlinear shell model of Koiter's type. Chin. Ann. Math. 22B, 129–144 (2001)

    Article  MathSciNet  Google Scholar 

  56. Koiter, W.T.: On the nonlinear theory of thin elastic shells. Proc. K. Ned. Akad. Wet. B69, 1–54 (1966)

    MathSciNet  Google Scholar 

  57. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences vol. 107. Springer, Berlin Heidelberg New York(1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Pruchnicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruchnicki, E. NonLinearly Elastic Membrane Model For Heterogeneous Shells by Using a New Double Scale Variational Formulation: A Formal Asymptotic Approach. J Elasticity 84, 245–280 (2006). https://doi.org/10.1007/s10659-006-9066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9066-0

AMS Mathematics Subject Classification (2000)

Key words

Navigation