Skip to main content
Log in

Field efficacy in controlling mango diseases of antagonist Talaromyces tratensis KUFA 0091 in fresh and dry formulations

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The application times and doses of fresh and dry formulations of Talaromyces tratensis KUFA 0091 were evaluated for their antagonistic activity in controlling mango diseases, anthracnose and stem-end rot diseases, under field conditions on two mango cultivars—namely, Nam Dok Mai Si Thong and Nam Dok Mai No. 4. The results show that three applications result in significantly more reduced disease severity than two and one applications. However, a high dose of the fresh formulation at 108 spores/ mL of the antagonistic fungus resulted in higher antagonistic activity in controlling mango diseases than the dry formulation and lower doses in both mango cultivars. Treatment of three applications at the flowering, fruit-setting, and fruit-developing stages of the fresh formulation at 108 spores/ mL had the best disease reduction at 80%–87%, followed by the dry formulation, which caused 75%–78% disease reduction. Meanwhile, the three applications of fresh and dry formulations at 106 spores/mL also displayed significant biocontrol efficacy of 70%–79% disease reduction. Its culture filtrate at 50% completely inhibited the spore germination of the anthracnose pathogen. The dry formulation also showed high efficacy on post-harvest disease in mango fruits. Moreover, the antagonistic fungus showed comparable efficacy with fungicides at a label rate with propineb (1,750 ppm), azoxystrobin (250 ppm), and mancozeb (1,600 ppm). The results indicate that this fungus can act as an effective biological control or be combined with fungicides for integrated mango disease management.

Highlights

  • First report of T. tratensis KUFA 0091 in controlling mango diseases under field conditions.

  • It show promising results in controlling the mango diseases under field condition.

  • It also showed potent inhibition of spore germination.

  • It was compatible with propineb, mancozeb and azoxystrobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, A., Fu, Y., Qu, Z., Zhao, H., Sun, Y., Lin, Y., Xie, J., Cheng, J., & Jiang, D. (2021). Isolation and evaluation of the biocontrol potential of Talaromyces spp. against rice sheath blight guided by soil microbiome. Environmental Microbiology, 23(10), 5946–5961.

    Article  CAS  PubMed  Google Scholar 

  • Alvindia, D. G. (2018). The antagonistic action of Trichoderma harzianum strain DGA01 against anthracnose-causing pathogen in mango cv. ‘Carabao.’ Biocontrol Science and Technology, 28(6), 591–602.

    Article  Google Scholar 

  • Barman, K., Asrey, R., Singh, D., Patel, V. B., & Sharma, S. (2017). Effect of Pseudomonas fluorescens formulations on decay and quality of mango (Mangifera indica) fruits during storage. Indian Journal of Agricultural Science, 87, 1214–1218.

    CAS  Google Scholar 

  • Buttachon, S., May Zin, W. W., Dethoup, T., Gales, L., Pereira, J. A., Silva, A. M. S., & Kijjoa, A. (2016). Secondary metabolites from the culture of the marine sponge-associated fungi Talaromyces tratensis and Sporidesmium circinophorum. Planta Medica, 82(9–10), 888–896.

    CAS  PubMed  Google Scholar 

  • Chalearmsrimuang, T., Ismail, S. I., Mazlan, N., Suasaard, S., & Dethoup, T. (2019). Marine-derived fungi: A promising source of halo tolerant biological control agents against plant pathogenic fungi. Journal of Pure and Applied Microbiology, 13(1), 209–223.

    Article  CAS  Google Scholar 

  • Chalearmsrimuang, T., Suasa-Ard, S., Jantasorn, A., & Dethoup, T. (2022). Effects of marine antagonistic fungi against plant pathogens and rice growth promotion activity. Journal of Pure and Applied Microbiology, 16(1), 402–418.

    Article  CAS  Google Scholar 

  • de Sá, J. D. M., Kumla, D., Dethoup, T., & Kijjoa, A. (2022). Bioactive compounds from terrestrial and marine-derived fungi of the genus Neosartorya. Molecules, 27(7), 2351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dethoup, T., Kaewsalong, N., Songkumorn, P., & Jantasorn, A. (2018). Potential application of a marine-derived fungus, Talaromyces tratensis KUFA 0091 against rice diseases. Biological Control, 119, 1–6.

    Article  CAS  Google Scholar 

  • Dethoup, T., Jantasorn, A., & Kaewsalong, N. (2022a). Efficacy of the antagonistic fungus Talaromyces tratensis KUFA 0091 in controlling rice blast and brown leaf spot diseases in field trials. Agriculture and Natural Resources, 56(4), 697–704.

    Google Scholar 

  • Dethoup, T., Klaram, R., Pankaew, T., & Jantasorn, A. (2022b). Impact of fungicides and plant extracts on biocontrol agents and side-effects of Trichoderma spp. on rice growth. European Journal of Plant Pathology, 164(4), 567–582.

    Article  CAS  Google Scholar 

  • Dethoup, T., Klaram, R., & Jantasorn, A. (2023). Effects of fungicides and antagonistic marine-derived fungi on rice seedling promotion and rice sheath blight control. Plant Production Science, 59(2), 159–173.

    Article  CAS  Google Scholar 

  • Dofuor, A. K., Quartey, N.K.-A., Osabutey, A. F., Antwi-Agyakwa, A. K., Asante, K., Boateng, B. O., Ablormeti, F. K., Lutuf, H., Osei-Owusu, J., Osei, J. H. N., Ekloh, W., Loh, S. K., Joseph OkaniHonger, J. O. J., Aidoo, O. F., & Ninsin, K. D. (2023). Mango anthracnose disease: the current situation and direction for future research. Frontiers in Microbiology, 14, 1168203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, G., Zhang, Y., Liang, X., Wang, M., Ye, Q., Xian, X., & Yang, Y. (2022). Resistance characterization of the natural population and resistance mechanism to pyraclostrobin in Lasiodiplodia theobromae. Pesticide Biochemistry and Physiology, 188, 105232.

    Article  CAS  PubMed  Google Scholar 

  • Eakjamnong, W., Keawsalong, N., & Dethoup, T. (2021). Novel ready-to-use dry powder formulation of Talaromyces tratensis KUFA0091 to control dirty panicle disease in rice. Biological Control, 152, 104454.

    Article  CAS  Google Scholar 

  • Evangelista-Martínez, Z., Ek-Cen, A., Torres-Calzada, C., & Uc-Várguez, A. (2022). Potential of Streptomyces sp. strain AGS-58 in controlling anthracnose-causing Colletotrichum siamense from post-harvest mango fruits. Journal of Plant Pathology, 104(2), 553–563.

    Article  Google Scholar 

  • Feygenberg, O., Diskin, S., Maurer, D., & Alkan, N. (2021). Effect of biological and chemical treatments during flowering on stem-end rot disease, and mango yield. Plant Disease, 105(6), 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  • Gava, C. A. T., Araújo Pereira, C., de Souza Tavares, P. F., & da Paz, C. D. (2022). Applying antagonist yeast strains to control mango decay caused by Lasiodiplodia theobromae and Neofusicoccum parvum. Biological Control, 170, 104912.

    Article  Google Scholar 

  • Guijarro, B., Casals, C., Teixidó, N., Larena, I., Melgarejo, P., & De Cal, A. (2020). Balance between resilient fruit surface microbial community and population of Monilinia spp. after biopesticide field applications of Penicillium frequentans. International Journal of Food Microbiology, 333, 108788.

    Article  CAS  PubMed  Google Scholar 

  • Jin, P., Wang, H., Tan, Z., Xuan, Z., Dahar, D. Y., Li, Q. X., Miao, W., & Liu, W. (2020). Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pesticide Biochemistry and Physiology, 163, 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Klaram, R., Jantasorn, A., & Dethoup, T. (2022). Efficacy of marine antagonist, Trichoderma spp. as halo-tolerant biofungicide in controlling rice diseases and yield improvement. Biological Control, 172, 104985.

    Article  CAS  Google Scholar 

  • Klaram, R., Dethoup, T., Machado, F. P., Gales, L., Kumla, D., Ghoran, S., Sousa, E., Mistry, S., Silva, A. M. S., & Kijjoa, A. (2023). Pentaketides and 5-p-hydroxyphenyl-2-pyridone derivative from the culture extract of a marine sponge-associated fungus Hamigera avellanea KUFA0732. Marine Drugs, 21(6), 344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konsue, W., Dethoup, T., & Limtong, S. (2020). Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms, 8(3), 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari, R., Kundu, M., Das, A., Rakshit, R., Sahay, S., Sengupta, S., & Ahmad, M. F. (2020). Long-term integrated nutrient management improves carbon stock and fruit yield in a subtropical mango (Mangifera indica L.) orchard. Journal of Soil Science and Plant Nutrition, 20(2), 725–737.

  • Li, D., Dai, T., Chen, M., Liang, R., Liu, W., Liu, C., Sun, J., Chen, J., & Deng, L. (2023). Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. Food Bioscience, 52, 102497.

    Article  CAS  Google Scholar 

  • Lim, L., Mohd, M. H., & Zakaria, L. (2019). Identification and pathogenicity of Diaporthe species associated with stem-end rot of mango (Mangifera indica L.). European Journal of Plant Pathology, 155(2), 687–696.

    Article  CAS  Google Scholar 

  • Limdolthamand, S., Songkumarn, P., Suwannarat, S., Jantasorn, A., & Dethoup, T. (2023). Biocontrol efficacy of endophytic Trichoderma spp. in fresh and dry powder formulations in controlling northern corn leaf blight in sweet corn. Biological Control, 181, 105217.

    Article  CAS  Google Scholar 

  • Matulaprungsan, B., Wongs-Aree, C., Penchaiya, P., Boonyaritthongchai, P., Srisurapanon, V., & Kanlayanarat, S. (2019). Analysis of critical control points of post-harvest diseases in the material flow of nam dok mai mango exported to Japan. Agriculture (Switzerland), 9(9), 200.

    CAS  Google Scholar 

  • Montiel, L. G. H., Rodriguez, R. Z., Angulo, C., Puente, E. O. R., Evangelina, E., Quiñonez Aguilar, E. E. Q., & Galicia, R. (2017). Marine yeasts and bacteria as biological control agents against anthracnose on mango. Journal of Phytopathology, 165(11–12), 833–840.

    Article  Google Scholar 

  • Mora-Aguilera, J. A., Ríos-López, E. G., Yáñez-Zúñiga, M., Rebollar-Alviter, A., Nava-Díaz, C., Leyva-Mir, S. G., Sandoval-Islas, J. S., & Tovar-Pedraza, J. M. (2021). Sensitivity to MBC fungicides and prochloraz of Colletotrichum gloeosporioides species complex isolates from mango orchards in Mexico. Journal of Plant Diseases and Protection, 128(2), 481–491.

    Article  CAS  Google Scholar 

  • Nampila, S., Choeichaiyaphum, C., & Ayutthaya, S. I. N. (2022). Control of quality and management of rot disease by using coating and temperature controlling for “Nam Dok Mai Sithong” mango. Acta Horticulturae, 1336, 387–394.

    Article  Google Scholar 

  • Nujthet, Y., Kaewkrajay, C., Kijjoa, A., & Dethoup, T. (2023). Biocontrol efficacy of antagonists Trichoderma and Bacillus against post-harvest diseases in mangos. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-023-02757-1

  • Reyes-Perez, J. J., Hernandez-Montiel, L. G., Vero, S., Noa-Carrazana, J. C., Quiñones-Aguilar, E. E., & Rincón-Enríquez, G. (2019). Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology, 56(11), 4992–4999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ShivamoggaNagaraju, R., HolalkereSriram, R., & Achur, R. (2020). Antifungal activity of carbendazim-conjugated silver nanoparticles against anthracnose disease caused by Colletotrichum gloeosporioides in mango. Journal of Plant Pathology, 102(1), 39–46.

    Article  Google Scholar 

  • Srisawat, K., Sirisomboon, P., Pun, U. K., Krusong, W., Rakmae, S., Chaomuang, N., Mawilai, P., Pongsuttiyakorn, T., Chookaew, C., & Pornchaloempong, P. (2022). Temperature difference in loading area (Tarmac) during handling of air freight operations and distance of production area affects quality of fresh mango fruits (Mangifera indica L. ‘Nam Dok Mai Si Thong’). Acta Horticulturae, 8(11), 1001.

    Article  Google Scholar 

  • Suasa-ard, S., Eakjamnong, W., & Dethoup, T. (2019). A novel biological control agent against postharvest mango disease caused by Lasiodioplodia theobromae. European Journal of Plant Pathology, 155(2), 583–592.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, S., He, Q., Lin, H., Chang, H., Liu, Y., Sun, H., & Song, X. (2023a). Analysis of the fungicidal efficacy, environmental fate, and safety of the application of a mefentrifluconazole and pyraclostrobin mixture to control mango anthracnose. Journal of the Science of Food and Agriculture, 103(1), 400–410.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Xu, L., Liang, X., Liang, X., Zhang, Y., Zheng, H. Y., Chen, J., & Yang, Y. (2023b). Biochemical and molecular characterization of prochloraz resistance in Lasiodiplodia theobromae field isolates. Plant Disease, 107(1), 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Wongkaew, M., Sangta, J., Chansakaow, S., Jantanasakulwong, K., Rachtanapun, P., & Sommano, S. R. (2021). Volatile profiles from over-ripe purée of Thai mango varieties and their physiochemical properties during heat processing. PLoS ONE, 16(3 March), e0248657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Dong, G., Wang, M., Xian, X., Wang, J., & Liang, X. (2021). Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection, 145, 105611.

    Article  CAS  Google Scholar 

  • Zakaria, L. (2021). Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops - a review. Agriculture (Switzerland), 11(4), 297.

    CAS  Google Scholar 

  • Zhou, D., Jing, T., Chen, Y., Yun, T., Qi, D., Zang, X., Zhang, M., Wei, Y., Li, K., Zhao, Y., Wang, W., & Xie, J. (2022). Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides. Food Control, 135, 108836.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Council of Thailand (NRCT), grant no. N41A640083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tida Dethoup.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dethoup, T., Kaewkrajay, C. & Nujthet, Y. Field efficacy in controlling mango diseases of antagonist Talaromyces tratensis KUFA 0091 in fresh and dry formulations. Eur J Plant Pathol (2024). https://doi.org/10.1007/s10658-024-02853-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10658-024-02853-w

Keywords

Navigation