Skip to main content
Log in

A novel biological control agent against postharvest mango disease caused by Lasiodioplodia theobromae

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The antagonist, Talaromyces tratensis KUFA 0091, displayed the ability to control stem end rot caused by L. theobromae on mango cv. ‘Nam Dok Mai’ and ‘Nam Dok Mai no. 4’. The results showed that mango treated with spore suspension of T. tratensis KUFA 0091 at 106 spores/ mL exhibited significant suppression (P < 0.05) of lesion development of up to 85% and 77% on mango cv. ‘Nam Dok Mai’ and ‘Nam Dok Mai no. 4’, respectively, when compared to the control objects. The best suppression of the average lesion was observed on mango cv. “Nam Dok Mai no. 4” when treated with spore suspension at 106 spores/ mL, which resulted in reduction of lesion development from 19.57 cm2 to 2.79 cm2. The results of this study show the potential of T. tratensis KUFA 0091 as a potent agent against mango stem end rot caused by L. theobromae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant pathology (5th ed.). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Alam, M. W., Rehman, A., Sahi, S. T., & Malik, A. U. (2017). Exploitation of natural products as an alternative strategy to control stem end rot disease of mango fruit in Pakistan. Pakistan Journal of Agricultural Sciences, 54, 775–783.

    Article  Google Scholar 

  • Al-Jabri, M. K., Al-Shaili, M., Al-Hashmi, M., Nasehi, A., Al-Mahmooli, I. H., & Al-Sadi, A. M. (2017). Characterizations and evaluation of fungicide resistance among Lasiodiplodia theobromae isolates associated with mango dieback in Oman. Journal of Plant Pathology, 99, 753–759.

    Google Scholar 

  • Alvindia, D. G., & Acda, M. A. (2015). Revisiting the efficacy of hot water treatment in managing anthracnose and stem-end rot diseases of mango cv. ‘Carabao’. Crop Protection, 67, 96–101.

    Article  Google Scholar 

  • Barman, K., Asrey, R., Singh, D., Patel, V. B., & Sharma, S. (2017). Effect of Pseudomonas fluorescens formulations on decay and quality of mango (Mangifera indica) fruits during storage. Indian Journal of Agricultural Sciences, 87, 1214–1218.

    CAS  Google Scholar 

  • Bautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., & Ragazzo-Sánchez, J. A. (2013). Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biological Control, 65(3), 293–301.

    Article  Google Scholar 

  • Bautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., Vázquez-Juárez, R., & Ragazzo-Sánchez, J. A. (2014). Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Protection, 65, 194–201.

    Article  Google Scholar 

  • Buttachon, S., May Zin, W. W., Dethoup, T., Gales, L., Pereira, J. A., Silva, A. M. S., & Kijjoa, A. (2016). Secondary metabolites from the culture of the marine sponge-associated fungi Talaromyces tratensis and Sporidesmium circinophorum. Planta Medica, 82(9–10), 888–896.

    CAS  PubMed  Google Scholar 

  • Chiangsin, R., Wanichkul, K., Guest, D. I., & Sangchote, S. (2016). Reduction of anthracnose on ripened mango fruits by chemicals, fruit bagging, and postharvest treatments. Australasian Plant Pathology, 45(6), 629–635.

    Article  CAS  Google Scholar 

  • Costa-Carvalho, R. R., Lins, S. R. O., Oliveira, S. M. A., Carvalho Filho, J. L. S., Laranjeira, D., Blank, A. F., Melo, J. O., & Alves, P. B. (2018). Effect of essential oils on in vitro control of Lasiodiplodia theobromae. Acta Horticulturae, (1198), 41–46. https://doi.org/10.17660/ActaHortic.2018.1198.8.

  • Dethoup, T., Kaewsalong, N., Songkumorn, P., & Jantasorn, A. (2018). Potential of a marine-derived species, Talaromyces tratensis KUFA 0091 against rice diseases. Biological Control, 119, 1–6.

    Article  CAS  Google Scholar 

  • Dinh, S. Q., Chongwungsee, J., Pongam, P., & Sangchote, S. (2003). Fruit infection by Colletotrichum gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. Australasian Plant Pathology, 32, 533–538.

    Article  Google Scholar 

  • El-Hossary, E. M., Cheng, C., Hamed, M. M., Hamed, A. N. E., Ohlsen, K., Hentschel, U., & Abdelmohsen, U. R. (2017). Antifungal potential of marine natural products. European Journal of Medicinal Chemistry, 126, 631–651.

    Article  CAS  Google Scholar 

  • Gabriel, B. L. (1982). Biological Electron Microscope. New York: Van Nostrand Reinhold Company Inc.

    Google Scholar 

  • Gava, C. A. T., de Castro, A. P. C., Pereira, C. A., & Fernandes-Júnior, P. I. (2018). Isolation of fruit colonizer yeasts and screening against mango decay caused by multiple pathogens. Biological Control, 117, 137–146.

    Article  Google Scholar 

  • Guntiya, N., Bussaban, B., Faiyue, B., Uthaibutra, J., & Saengnil, K. (2016). Application of gaseous chlorine dioxide for control of fungal fruit rot disease of harvested ‘Daw’ longan. Scientia Horticulturae, 213, 164–172.

    Article  CAS  Google Scholar 

  • Johnson, G. I., Mead, A. J., Cooke, A. W., & Dean, J. R. (1992). Mango stem end rot pathogens-fruit infection by endophytic colonization of the inflorescence and pedicel. Annals of Applied Biology, 120, 225–234.

    Article  Google Scholar 

  • Kamil, F. H., Saeed, E. E., El-Tarabily, K. A., & AbuQamar, S. F. (2018). Biological control of mango dieback disease caused by Lasiodiplodia theobromae using Streptomycete and non- Streptomycete actinobacteria in the United Arab Emirates. Frontiers in Microbiology, 9(829). https://doi.org/10.3389/fmicb.2018.0082990.

  • Kong, Q. (2018). Marine microorganisms as biocontrol agents against fungal phytopathogens and mycotoxins. Biocontrol Science and Technology, 28, 77–93.

    Article  Google Scholar 

  • Kumar, S. N., Aravind, S. R., Sreelekha, T. T., Jacob, J., & Kumar, B. S. (2015). Asarones from Acorus calamus in combination with azoles and amphotericin B: A novel synergistic combination to compete against human pathogenic Candida species in vitro. Applied Biochemistry and Biotechnology, 175, 3683–3695.

    Article  CAS  Google Scholar 

  • Kumla, D., Dethoup, T., Buttachon, S., Singburaudom, N., Silva, A. M. S., & Kijjoa, A. (2014). Spiculisporic acid E, a new spiculisporic acid derivatives from the marine-sponge associated fungus Talaromyces trachyspermus (KUFA 0021). Natural Product Communications, 9, 1147–1150.

    Article  CAS  Google Scholar 

  • Kumla, D., Aung, T. S., Buttachon, S., Dethoup, T., Gales, L., Pereira, J. A., & Kijjoa, A. (2017). A new dihydrochromone dimer and other secondary metabolites from cultures of the marine sponge-associated fungi Neosartorya fennelliae KUFA 0811 and Neosartorya tsunodae KUFC 9213. Marine Drugs, 15, 375. https://doi.org/10.3390/md151203753.

    Article  PubMed Central  Google Scholar 

  • Malik, M. T., Ammar, M., Ranan, M., Rehman, A., & Bally, I. S. E. (2016). Chemical and cultural management of die back disease of mango in Pakistan. Acta Horticulturae, 29, 363–368.

    Article  Google Scholar 

  • Matulaprungsan, B., Boonyaritthongchai, P., Wongs-Aree, C., Kanlayanarat, S. S., & Srisurapanon, V. (2015). Postharvest disease development in the mango supply chain in Thailand. Acta Horticulturae, (1088), 289–292.

  • Mitra, S. K. (2016). Mango production in the world-present situation and future prospect. Acta Horticulturae, (1111), 287–296.

  • Moalemiyan, M., Vikram, A., Kushalappa, A. C., & Yaylayan, V. (2006). Volatile metabolite profiling to detect and discriminate stem-end rot and anthracnose diseases of mango fruits. Plant Pathology, 55, 792–802.

    Article  CAS  Google Scholar 

  • Mohamed, N. T. S., Ding, P., Kadir, J., & Ghazali, H. M. (2017). Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening. Food Science & Nutrition, 5(5), 967–980.

    Article  CAS  Google Scholar 

  • Montiel, L. G. H., Rodriguez, R. Z., Angulo, C., Puente, E. O. R., Aquilar, E. E. Q., & Galicia, R. (2017). Marine yeasts and bacteria as biological control agents against anthracnose on mango. Journal of Phytopathology, 165, 833–840. https://doi.org/10.1111/jph.12623.

    Article  CAS  Google Scholar 

  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palma-Orozco, G., Osorio-Esquivel, O., & Nájera, H. (2016). Mango: chemical composition and health benefits. In E. P. Young (Ed.), Mango: Production, properties and health benefits. Nova Science Publishers.

  • Perumal, A. B., Sellamuthu, P. S., Nambiar, R. B., & Sadiku, E. R. (2016). Antifungal activity of five different essential oils in vapour phase for the control of Colletotrichum gloeosporioides and Lasiodiplodia theobromae in vitro and on mango. International Journal of Food Science & Technology, 51, 411–418.

    Article  CAS  Google Scholar 

  • Prathibha, V. H., Hegde, V., Sharadraj, K. M., & Chowdappa, P. (2017). First report of Lasiodiplodia theobromae causing apple and immature nut rots on cashew in India. Journal of Plant Pathology, 99, 295.

    Google Scholar 

  • Prompanya, C., Dethoup, T., Bessa, L. J., Pinto, M. M. M., Gales, L., Costa, P. M., Silva, A. M. S., & Kijjoa, A. (2014). New isocoumarin derivatives and meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013. Marine Drugs, 12(10), 5160–5173.

    Article  CAS  Google Scholar 

  • Prompanya, C., Fernandes, C., Cravo, S., Pinto, M. M. M., Dethoup, T., Silva, A. M. S., & Kijjoa, A. (2015). A new cyclic hexapeptide and a new isocoumarin derivative from the marine sponge-associated fungus Aspergillus similanensis KUFA 0013. Marine Drugs, 13(3), 1432–1450.

    Article  CAS  Google Scholar 

  • Prompanya, C., Dethoup, T., Gales, L., Lee, M., Pereira, J. A. C., Silva, A. M. S., Pinto, M. M. M., & Kijjoa, A. (2016). New polyketides and new benzoic acid derivatives from the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. Marine Drugs, 14, 134. https://doi.org/10.3390/md14070134.

    Article  CAS  PubMed Central  Google Scholar 

  • Seethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158–166.

    Article  CAS  Google Scholar 

  • Suwanamornlert, P., Sangchote, S., Chinsirikul, W., Sane, A., & Chonhenchob, V. (2018). Antifungal activity of plant-derived compounds and their synergism against major postharvest pathogens of longan fruit in vitro. International Journal of Food Microbiology, 271, 8–14.

    Article  CAS  Google Scholar 

  • Trakunyingcharoen, T., Cheewangkoon, R., To-Anan, C, Crous, P. W., Van Niekerk, J. M., & Lombard, L. (2014). Botryosphaeriaceae associated with diseases of mango (Mangifera indica). Australasian Plant Pathology, 43(4), 425–438.

    Google Scholar 

  • Xu, X., Lei, H., Ma, X., Lai, T., Song, H., Shi, H., & Li, J. (2017). Antifungal activity of 1-methylcyclopropane (1-MCP) against anthracnose (Colletotrichum gloeosporioides) in postharvest mango fruit and its possible mechanisms of action. International Journal of Food Microbiology, 241(1–6), 1–6.

    Article  CAS  Google Scholar 

  • Yasunaga, E., Fukuda, S., Takata, D., Spreer, W., Sardsud, V., & Nakano, K. (2018). Quality changes in fresh mango fruits (Mangifera indica I. ‘Nam Dok Mai’) under actual distribution temperature profile from Thailand to Japan. Environmental Control in Biology, 56, 45–49.

    Article  Google Scholar 

  • Zhang, S., Lin, Y. Z., Lin, H. T., Lin, Y. X., Chen, Y. H., Wang, H., Shi, J., & Lin, Y. F. (2018). Lasiodiplodia theobromae (pat.) Griff. & Maubl.-induced disease development and pericarp browning of harvested longan fruit in association with membrane lipids metabolism. Food Chemistry, 244, 93–101.

    Article  CAS  Google Scholar 

  • Zhao, W., Gottwald, T., Bai, J. H., McCollum, G., Irey, M., Plotto, A., & Baldwin, E. (2016). Correlation of Diplodia (Lasiodiplodia theobromae) infection, huanglongbing, ethylene production, fruit removal force and pre-harvest fruit drop. Scientia Horticulturae, 212, 162–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Graduate School, Kasetsart University and Kasetsart University Research Development Institute (KURDI) and financial supports of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tida Dethoup.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suasa-ard, S., Eakjamnong, W. & Dethoup, T. A novel biological control agent against postharvest mango disease caused by Lasiodioplodia theobromae. Eur J Plant Pathol 155, 583–592 (2019). https://doi.org/10.1007/s10658-019-01794-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01794-z

Keywords

Navigation