Skip to main content

Advertisement

Log in

Evaluation of the potentials of Bacillus and Trichoderma isolates as biocontrol agents against Meloidogyne javanica and Phytophthora infestans and plant growth promoters in potatoes (Solanum tuberosum)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Root-knot nematodes and late blight caused by Phytophthora infestans cause major economic losses in potato production worldwide. Their control is primarily based on the application of synthetic agrochemicals with detrimental effects on the environment and human health. The objective of this study was to investigate Zimbabwean Bacillus and Trichoderma isolates as biocontrol agents of root-knot nematodes and late blight disease in potato as well as their impact as plant growth promoters. In in vitro studies, 27 Trichoderma and 59 Bacillus isolates that were isolated from the rhizosphere of potato and tobacco crops were screened for their biocontrol potentials against Phytophthora infestans and Meloidogyne javanica. Three Trichoderma isolates (T13, T17 and T28) caused ≥ 97% inhibition of P. infestans mycelial growth, while two Bacillus isolates (B1 and B2) caused ≥ 50% inhibition of P. infestans mycelial growth. In a greenhouse experiment with selected isolates, the T28 and Trichoderma Combo isolates significantly (p < 0.05) reduced nematode galling by up to 49.84% when compared to the untreated controls. The biocontrol isolates application also significantly (p < 0.05) reduced late blight disease severity. Isolates application significantly increased chlorophyll fluorescence in plants. The application of Trichoderma Combo and/or T28 isolates significantly increased tuber weight and stomatal conductance in nematode-infected plants. The research highlighted the greater potential of Trichoderma as a biocontrol agent over Bacillus, with isolate T28 being recommended for field evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data will be available upon request.

References

  • Adam, M., Heuer, H., & Hallmann, J. (2014). Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS ONE, 9(2), e90402. https://doi.org/10.1371/journal.pone.0090402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adnan, M., Islam, W., Shabbir, A., Khan, K. A., Ghramh, H. A., Huang, Z., Chen, H. Y. H., & Lu, G.-D. (2019). Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microbial Pathogenesis, 129, 7–18. https://doi.org/10.1016/j.micpath.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  • Agrios, G. N. (2005). Plant Pathology (5th ed.). Academic Press.

    Google Scholar 

  • Anusaraporn, S., Autarmat, S., Treesubsuntorn, C., & Thiravetyan, P. (2020). Application of Bacillus sp. N7 to enhance ozone tolerance of various Oryza sativa in vegetative phase: Possible mechanism and rice productivity. Biocatalysis and Agricultural Biotechnology, 25, 101591. https://doi.org/10.1016/j.bcab.2020.101591

    Article  Google Scholar 

  • Ashoub, A., & Amara, M. (2010). Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science, 6(10), 321–328.

    Google Scholar 

  • Ayele, A. G., Wheeler, T. A., & Dever, J. K. (2020). Impacts of Verticillium wilt on photosynthesis rate, lint production, and fiber quality of greenhouse-grown cotton (Gossypium hirsutum). Plants, 9(7), 857. https://doi.org/10.3390/plants9070857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260.

    PubMed  Google Scholar 

  • Błaszczyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J., & Jędryczka, M. (2014). Trichoderma spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research, 54(4), 309–317. https://doi.org/10.2478/jppr-2014-0047

    Article  Google Scholar 

  • Bourke, P. M. A. (1964). Emergence of Potato Blight, 1843–46. Nature, 203, 805–808. https://doi.org/10.1038/203805a0

    Article  Google Scholar 

  • Castagnone-Sereno, P., Danchin, E. G. J., Perfus-Barbeoch, L., & Abad, P. (2013). Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic era. Annual Review of Phytopathology, 51(1), 203–220. https://doi.org/10.1146/annurev-phyto-082712-102300

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Alfaro-Cuevas, R., & López-Bucio, J. (2014). Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Molecular Plant-Microbe Interactions, 27(6), 503–514. https://doi.org/10.1094/mpmi-09-13-0265-r

    Article  CAS  PubMed  Google Scholar 

  • Costa-Santos, M., Mariz-Ponte, N., Dias, M., Moura, L., Marques, G., & Santos, C. (2021). Effect of Bacillus spp. and Brevibacillus sp. on the photosynthesis and redox status of Solanum lycopersicum. Horticulturae, 7(2), 24. https://doi.org/10.3390/horticulturae7020024

    Article  Google Scholar 

  • Coyne, D. L., Tchabi, A., Baimey, H., Labuschagne, N., & Rotifa, I. (2006). Distribution and prevalence of nematodes (Scutellonema bradys and Meloidogyne spp.) on marketed yam (Dioscorea spp) in West Africa. Field Crops Research, 96(1), 142–150. https://doi.org/10.1016/j.fcr.2005.06.004

    Article  Google Scholar 

  • Daayf, F., Adam, L., & Fernando, W. G. D. (2003). Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in vitro, detached-leaves, and whole-plant testing systems. Canadian Journal of Plant Pathology, 25, 276–284. https://doi.org/10.1080/07060660309507080

    Article  Google Scholar 

  • Daulton, R. A. C., & Nusbaum, C. J. (1961). The effect of soil temperature on the survival of the root-knot nematodes Meloidogyne javanica and M. hapla). Nematologica, 6(4), 280–294. https://doi.org/10.1163/187529261x00144

    Article  Google Scholar 

  • El-Naggar, M. A., Abouleid, H. Z., El-Deeb, H. M., Abd-El-Kareem, F., & Elshahawy, I. E. (2016). Biological control of potato late blight by means of induction systemic resistance and antagonism. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 13, 1338–1348.

    Google Scholar 

  • El-Shennawy, M. Z., Khalifa, E. Z., Ammar, M. M., Mousa, E. M., & Hafez, S. L. (2012). Biological control of the disease complex on potato caused by root-knot nematode and Fusarium wilt fungus. Nematologia Mediterranea, 40, 169–172.

    Google Scholar 

  • Forbes, G, Pérez, W & Andrade-Piedra, J. (2014). Field assessment of resistance in potato to Phytophthora infestans. Lima (Peru). International Potato Center (CIP). 35 pages. https://doi.org/10.4160/9789290604402

  • Fourie, H., Mc Donald, A. H., & De Waele, D. (2013). Host and yield responses of soybean genotypes resistant or susceptible to Meloidogyne incognita in vivo. International Journal of Pest Management, 59(2), 111–121. https://doi.org/10.1080/09670874.2013.772261

    Article  Google Scholar 

  • Gálvez, A., del Amor, F. M., Ros, C., & López-Marín, J. (2019). New traits to identify physiological responses induced by different rootstocks after root-knot nematode inoculation (Meloidogyne incognita) in sweet pepper. Crop Protection, 119, 126–133. https://doi.org/10.1016/j.cropro.2019.01.026

    Article  Google Scholar 

  • Goutam, U., Thakur, K., Salaria, N. & Kukreja, S. (2018). Recent approaches for late blight disease management of potato caused by Phytophthora infestans. In: Gehlot, P., Singh, J. (eds) Fungi and their role in sustainable development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_18

  • Hu, S., Ding, Y., & Zhu, C. (2020). Sensitivity and responses of chloroplasts to heat stress in plants. Frontiers in Plant Science, 11, 375. https://doi.org/10.3389/fpls.2020.00375

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussey, R. S., & Barker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne species, including a new technique. Plant Disease Reporter, 57, 1025–1028.

    Google Scholar 

  • Kaiser, C., Van Der Merwe, R., Bekker, T., & Labuschagne, N. (2005). In-vitro inhibition of mycelial growth of several phytopathogenic fungi, including Phytophthora cinnamomi by soluble silicon. South African Avocado Growers’ Association Yearbook, 28, 70–74.

    Google Scholar 

  • Karavina, C., & Mandumbu, R. (2012). Phytoparasitic nematode management post methyl bromide: Where to for Zimbabwe? International Journal of Agricultural Technology, 8(4), 1141–1160.

    CAS  Google Scholar 

  • Kariuki, W. G., Mungai, N. W., Otaye, D. O., Thuita, M., Muema, E., Korir, H., & Masso, C. (2020). Antagonistic effects of biocontrol agents against Phytophthora infestans and growth stimulation in tomatoes. African Crop Science Journal, 28(s1), 55–70. https://doi.org/10.4314/acsj.v28i1.5s

    Article  Google Scholar 

  • Khan, F., Asif, M., Khan, A., Tariq, M., Ansari, T., Shariq, M., & Siddiqui, M. A. (2019). Evaluation of the nematicidal potential of some botanicals against root-knot nematode, Meloidogyne incognita infected carrot: In vitro and greenhouse study. Current Plant Biology, 20, 100115. https://doi.org/10.1016/j.cpb.2019.100115

    Article  Google Scholar 

  • Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, G., Maharshi, A., Patel, J., Mukherjee, A., Singh, H. B., & Sarma, B. K. (2017). Trichoderma: A potential fungal antagonist to control plant diseases. SATSA Mukhapatra- Annual Technical Issue, 21, 206–218.

    Google Scholar 

  • Liu, H.-X., Li, S.-M., Luo, Y.-M., Luo, L.-X., Li, J.-Q., & Guo, J.-H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology, 139, 107–116. https://doi.org/10.1007/s10658-013-0369-2

    Article  Google Scholar 

  • Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155–166.

    CAS  Google Scholar 

  • Lu, Z., Guo, W., & Liu, C. (2018). Isolation, identification and characterization of novel Bacillus subtilis. Journal of Veterinary Medical Science, 80(3), 427–433. https://doi.org/10.1292/jvms.16-0572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmir, M., Serrano, R. & Silva, O. (2017). Anthraquinones as potential antimicrobial agents-A review. In: A. Méndez-Vilas (Ed.), Antimicrobial research: Novel bioknowledge and educational programs (pp. 55–61). Badajoz: Formatex Research Center.

  • Menezes-Blackburn, D., Jorquera, M. A., Gianfreda, L., Greiner, R., & de la Luz Mora, M. (2014). A novel phosphorus biofertilization strategy using cattle manure treated with phytase–nanoclay complexes. Biology and Fertility of Soils, 50, 582–593. https://doi.org/10.1007/s00374-013-0872-9

    Article  Google Scholar 

  • Moens, M., Perry, R. N., & Starr, J. L. (2009). Meloidogyne species–a diverse group of novel and important plant parasites. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot Nematodes (pp. 1–13). CABI.

    Google Scholar 

  • Mohammed, R. K. A., & Khan, M. R. (2021). Management of root-knot nematode in cucumber through seed treatment with multifarious beneficial microbes in polyhouse under protected cultivation. Indian Phytopathology. https://doi.org/10.1007/s42360-021-00422-3

    Article  Google Scholar 

  • Morrissey, J. P., & Osbourn, A. E. (1999). Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis. Microbiology and Molecular Biology Reviews, 63(3), 708–724. https://doi.org/10.1128/mmbr.63.3.708-724.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzhandu, R. T., Chinheya, C. C., Manjeru, P., & Dimbi, S. (2013). Use of edaphic factors to map the spatial distribution of root knot nematodes in tobacco plantations. African Journal of Agricultural Research, 8(20), 3946–3949.

    Google Scholar 

  • Mwangi, J. M. (2011). Plant parasitic nematodes associated with cabbage in different agro-ecological zones in Nyandarua and Embu counties. Thesis, Kenyata University, Nairobi.

    Google Scholar 

  • Naznin, A., Hossain, M. M., Ara, K. A., Hoque, A., & Islam, M. (2015). Influence of organic amendments and bio-control agent on yield and quality of tuberose. Journal of Horticulture, 2(4), 156–163. https://doi.org/10.4172/2376-0354.1000156

    Article  Google Scholar 

  • Newbery, F., Qi, A., & Fitt, B. D. (2016). Modelling impacts of climate change on arable crop diseases: Progress, challenges and applications. Current Opinion in Plant Biology, 32, 101–109.

    Article  PubMed  Google Scholar 

  • Nunez, J. (2018). Potato Dextrose Agar (PDA). Available online: https://www.mycrobe.org/blog/2018/7/6/potato-dextrose-agar-pda. Accessed 9 Nov 2021.

  • Oliveira, D. F., Dos Santos Júnior, H. M., Nunes, A. S., Campos, V. P., De Pinho, R. S. C., & Gajo, G. C. (2014). Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. Anais Da Academia Brasileira De Ciências, 86, 525–538.

    Article  CAS  PubMed  Google Scholar 

  • Onkendi, E. M., Kariuki, G. M., Marais, M., & Moleleki, L. N. (2014). The threat of root-knot nematodes (Meloidogyne spp.) in Africa: A review. Plant Pathology, 39, 727–737.

    Article  Google Scholar 

  • Rao, M. P. N., Xiao, M. & Li, W.-J. (2017). Fungal and bacterial pigments: secondary metabolites with wide applications. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01113

  • Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1–2), 305–339. https://doi.org/10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40(8), 2016–2020.

    Article  CAS  Google Scholar 

  • Saleem, M. Y., Akhtar, K. P., Iqbal, Q., Asghar, M., Hameed, A., & Shoaib, M. (2016). Development of tomato hybrids with multiple disease tolerance. Pakistan Journal of Botany, 48(2), 771–778.

    CAS  Google Scholar 

  • Samaniego-Gamez, B. Y., Garrura, R., Tan-Suarez, J. M., Kantun-Can, J., Reyes-Ramirez, A., & Cervantes-Dias, L. (2016). Bacillus spp. inoculation improves photosystem II and enhances photosynthesis in pepper plants. Chilean Journal of Agricultural Research, 76(4), 409–416.

    Article  Google Scholar 

  • Scharte, J., Schon, H., & Weis, E. (2005). Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant, Cell and Environment, 28(11), 1421–1435. https://doi.org/10.1111/j.1365-3040.2005.01380.x

    Article  CAS  Google Scholar 

  • Secor, G. A., & Rivera-Varas, V. V. (2004). Emerging diseases of cultivated potato and their impact on Latin America. Rev Latinoamericana Papa (suppl), 1, 1–8.

    Google Scholar 

  • Sekhar, Y. S., Ahammed, K. A., Prasad, T. N. V. K. V., Sarada, R., & Devi, J. (2017). Identification of Trichoderma species based on morphological characters isolated from rhizosphere of groundnut (Arachis hypogaea L). International Journal of Science, Environment and Technology, 6(3), 2056–2063.

    Google Scholar 

  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology & Biotechnological Equipment, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950

    Article  CAS  Google Scholar 

  • Shah, M. M. & Afiya, H. (2019). Introductory Chapter: Identification and isolation of Trichoderma spp. - Their significance in agriculture, human health, industrial and environmental application. www.intechopen.com. Intech Open. https://www.intechopen.com/chapters/65413 [Accessed 19 Nov. 2021].

  • Shi, Y., Lou, K., & Li, C. (2010). Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Research, 105(1), 5–13. https://doi.org/10.1007/s11120-010-9547-7

    Article  CAS  PubMed  Google Scholar 

  • Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., & Hritcu, L. (2013). Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae, 151, 22–29. https://doi.org/10.1016/j.scienta.2012.12.006

    Article  Google Scholar 

  • Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

    Article  CAS  PubMed  Google Scholar 

  • Taylor, S. H., Orr, D. J., Carmo-Silva, E., & Long, S. P. (2020). During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops. Plant, Cell & Environment, 43(11), 2623–2636. https://doi.org/10.1111/pce.13862

    Article  CAS  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002

    Article  CAS  Google Scholar 

  • Viterbo, A., Montero, M., Ramot, O., Friesem, D., Monte, E., Llobell, A., & Chet, I. (2002). Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Current Genetics, 42(2), 114–122. https://doi.org/10.1007/s00294-002-0345-4

    Article  CAS  PubMed  Google Scholar 

  • Waals, J. E., & Krüger, K. (2020). Emerging potato pathogens affecting food security in Southern Africa: Recent research. South African Journal of Science, 116(11–12), 1–7. https://doi.org/10.17159/sajs.2020/8055

    Article  CAS  Google Scholar 

  • Wilson, C., & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics, 39(3), 449–462. https://doi.org/10.1016/s0921-8009(01)00238-5

    Article  Google Scholar 

  • Xia, C., Li, N., Zhang, X., Feng, Y., Christensen, M. J., & Nan, Z. (2016). An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecology, 22, 26–34. https://doi.org/10.1016/j.funeco.2016.04.002

    Article  Google Scholar 

  • Yendyo, S., Ramesh, G. C., & Pandey, B. R. (2018). Evaluation of Trichoderma spp, Pseudomonas fluorescens and Bacillus subtilis for biological control of Ralstonia wilt of tomato. F1000 Research, 6, 2028. https://doi.org/10.12688/f1000research.12448.3

  • Yobo, K. S. (2005). Biological control and plant growth promotion by selected Trichoderma and Bacillus species. PhD Thesis, Available at: https://researchspace.ukzn.ac.za/xmlui/handle/10413/5335. Accessed 8 Nov 2021.

  • Zimudzi, J., Coutinho, T. A., & van der Waals, J. E. (2017). Pathogenicity of fungi isolated from atypical skin blemishes on potatoes in South Africa and Zimbabwe. Potato Research, 60(2), 119–144. https://doi.org/10.1007/s11540-017-9345-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Karavina.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinheya, C.C., Mlambo, L.C., Shamudzarira, G. et al. Evaluation of the potentials of Bacillus and Trichoderma isolates as biocontrol agents against Meloidogyne javanica and Phytophthora infestans and plant growth promoters in potatoes (Solanum tuberosum). Eur J Plant Pathol 167, 699–714 (2023). https://doi.org/10.1007/s10658-023-02756-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02756-2

Keywords

Navigation