Skip to main content
Log in

Comparison of compost, PGPR, and AMF in the biological control of tomato Fusarium wilt disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Soil-borne fungal infections reduce yields, and result in severe economic losses by destroying the root, stem, and vascular components of many plants. For disease management that is efficient, inexpensive, and has no adverse effects on the environment, the use of biocontrol materials is crucial. In this study, three different biocontrol agents were evaluated for their ability to reduce the stress that Fusarium oxysporum f.sp. lycopersici (FOL) causes in tomato plants. These agents included compost made from locally accessible green wastes, a strain of bacteria (Bacillus subtilis strain ®Serenade), and arbuscular mychorrizal fungi (®Mikostar). Using correlation and PCA analysis, the effects of these agents on FOL disease were further linked to nutrient intake, physicochemical properties of plants, and the rhizosphere. Five different applications were used in the experiment, which was carried out in controlled conditions utilizing a completely random experimental design: pathogen-inoculated positive control (A), non-inoculated negative control (B), A + compost (C), A + AMF (D), and A + Bacillus subtilis (E). There were statistically significant differences (p < 0.05) between groups in terms of the indicators of plant disease as well as the other parameters studied, according to ANOVA-Tukey analysis. Compost proved to be the most effective treatment among the three materials evaluated, reducing disease severity by up to 100%, followed by AMF (36.4%) and Bacteria (34.1%). The LAI, shoot fresh and dry weight, SPAD values, plant nutrient contents (N, Ca, Mg, Mn), and parameters assessed in the rhizosphere (B, Ca, Fe, K, Mg, Dehydrogenase, and CO2 respiration) were the highest in pots treated with compost, and all had statistically significant negative correlations with disease severity (p < 0.05). The results show that compost made from local green waste could be effective in reducing tomato FOL disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data is available on request from the authors.

Code availability

Code is available on request from the authors.

References

  • Aggeli, F., Ziogas, I., & Gkizi, D. (2020). Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce. BioControl, 65, 763–773.

    Article  CAS  Google Scholar 

  • Anonymous. (2011). Soilborne pathogens (Fungus and Bacteria) in vegetables standard pesticides trial methods. In: Plant Diseases Standard Pesticide trial methods. Ministry of Agriculture & Forestry, General Directorate of Agricultural Research and Policies, pp. 130–133. https://www.tarimorman.gov.tr/TAGEM/Belgeler/Sitandard/Sebze%20Hastal%C4%B1klar%C4%B1%20Standart%20%C4%B0la%C3%A7%20Deneme%20Metotlar%C4%B1.pdf. Accessed 29 May 2023.

  • Asadabadi, R. S., Hage-Ahmed, K., & Steinkellner, S. (2021). Biochar, compost and arbuscular mycorrhizal fungi: A tripartite approach to combat Sclerontinia sclerotiorum in soybean. Journal of Plant Diseases and Protection, 128, 1433–1445.

    Article  Google Scholar 

  • Aydogdu, A. (2022). The potential use of grass clippings, vegetables and pistachio waste as compost and biochar. Harran University.

  • Bilgili, A. (2017). Determination of root rot factors in Gap region pepper cultivation, molecular characterization of the active pathogen and investigation of the efficiency of mycorrhiza in its control. Harran University.

  • Bilgili, A., Bayram, M., Küçük, E., Yücel, S. (2022). Güneydoğu Anadolu Bölgesinde Bazı Domates Genotiplerinin Toprak Kökenli Fungal Patojenlere Karşı Reaksiyonlarının Belirlenmesi. Retrieved April 15, 2022, from https://www.tarimorman.gov.tr/TAGEM/Belgeler/pdgt/bsad/2022%20SAATL%C4%B0%20VE%20%C3%96ZETLER.pdf. (In Turkish).

  • Brejda, J. J., Karlen, D. L., Smith, J. L., & Allan, D. L. (2000). Identification of regional soil quality factors and indicators: II. Northern Mississippi Loess Hills and Palouse Prairie. Soil. Soil Science Society of America Journal, 64, 2125–2135.

    Article  CAS  Google Scholar 

  • Çolak, A., & Biçici, M. (2011). Determination of emergence, severity and prevalence of wilt and root-root rot rot diseases by symptomatological distinction of Fusarium oxysporum special forms in greenhouse tomato cultivation in the Eastern Mediterranean region. Plant Protection Bulletin, 51(4), 331–345.

    Google Scholar 

  • Cucci, G., Lacolla, G., Mastro, M. A., Caranfa, D., Monteforte, A., & De Corato, U. (2020). Green compost influences yield and quality of carrots (Daucus carota L.) by enhancing root rot suppression to Sclerotinia sclerotiorum (Lib. De Bary). European Journal of Horticultural Science, 85(6), 411–421.

    Article  Google Scholar 

  • De Corato, U. (2020). Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere, 13, 100192.

    Article  Google Scholar 

  • Devi, N. O., Tombisana Devi, R. K., Debbarma, M., et al. (2022). Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Egyptian Journal of Biological Pest Control, 32, 1.

    Article  Google Scholar 

  • Díaz-Pérez, J. C., Germishuizen, P., & Da Silva, A. L. B. R. (2021). Effect of compost application at transplant stage and before planting to the field on plant growth and fruit yield in bell pepper (Capsicum annum L.). Communications in Soil Science and Plant Analysis, 52(22), 2793–2802.

    Article  Google Scholar 

  • EPPO. (2003). Fusarium oxysporum f. sp. albedinis. Bulletin EPPO, 33, 265–269. https://doi.org/10.1046/j.1365-2338.2003.00637.x

    Article  Google Scholar 

  • FAOSTAT (Food and Agriculture Organization of the United Nations). (2020). Statistic Database. Retrieved April 15, 2021, from, https://www.fao.org/faostat/en/#data/QCL/visualize

  • Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halıla, M. H., & Strange, R. N. (1996). Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceris race 0. Phytopathology, 86, 67–74.

    Google Scholar 

  • Hasna, M. K., Mårtensson, A., Persson, P., & Rämert, B. (2007). Use of composts to manage corky root disease in organic tomato production. Annals of Applied Biology, 151, 381–390.

    Article  Google Scholar 

  • Hoitink, H. A. J., Van Doren, Jr., D. M., & Schmitthenner, A. F. (1977). Suppression of Phytophthora cinnamomi in a composted hardwood bark potting medium. Phytopathology, 67, 561–565.

  • Isermeyer, H. (1952). Eine einfache-Methode zur-Bestimmung der Bodenatmung und der Karbonate: im-Böden. Z. Pflanzenaehr.

  • JMP®. (1989–2021). JMP Pro16. SAS Institute Inc.

  • Jones, J. B., Jones, J. P., Stall, R. E., & Zitter, A. T. (1993). Compendium of tomato diseases (p. 73). APS Press.

    Google Scholar 

  • Joshi, D., Hooda, K. S., Bhatt, J. C., Mina, B. L., & Gupta, H. S. (2009). Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Protection, 28(7), 608–615.

    Article  Google Scholar 

  • Kaçar, B., & Inal, A. (2008). Bitki Analizleri. Nobel Yayın Dağıtım. (In Turkish).

  • Larkin, R. P., & Fravel, D. R. (1998). Efficacy of Various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant DisEase, 82(9), 1022–1028.

    Article  PubMed  Google Scholar 

  • Lecoq, H., Blancard, D., Bertrand, F., Nicot, P., Glandard, A., Molot, P. M., & Mas Et, P. (1991). Techniques d’inoculation artificielle du Melon avec differents agents pathogenes pour la selection de varietes resistances. INRA.

    Google Scholar 

  • Li, X., Wang, X., Shi, X., Wang, Q., Li, X., & Zhang, S. (2020). Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt. Journal of Plant Diseases and Protection, 127, 257–268. https://doi.org/10.1007/s41348-019-00290-0

  • Martin (St.), C. C.G., & Brathwaite, R. A. I. (2012). Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture & Horticulture, 28(1), 1–33.

  • Mehta, C. M., Uma Palni, I. H., Franke-Whittle, S., & A.K. (2014). Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34(3), 607–622.

    Article  CAS  PubMed  Google Scholar 

  • Meng, T., Wang, Q., Abbasi, P., & Ma, Y. (2019). Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Applied Microbiology and Biotechnology, 103(3), 1497–1509.

    Article  CAS  PubMed  Google Scholar 

  • Mutlu, N., Demirelli, A., Ilbi, H.,& Ikten, C. (2015). Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theoretical and Applied Genetics, 128(9), 1791–1798.

  • Pane, C., Piccolo, A., Spaccini, R., Celano, G., Villecco, D., & Zaccardelli, D. (2013). Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Applied Soil Ecology, 65, 43–51.

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna. https://www.R-project.org

  • Rahou, Y.A., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ben-Laouane, R., Douira, A., Benkirane, R., El Modafar, C., & Meddich, A. (2021). Use of mycorrhizal fungi and compost for improving the growth and yield of tomato and its resistance to Verticillium dahliae. Archives of Phytopathology and Plant Protection, 54(13–14), 665–690. https://doi.org/10.1080/03235408.2020.1854938

  • Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2020). Integrated proposal for management of root rot caused by Phytophthora cinnamomi in avocado cv. Hass Crops. Crop Protection, 137, 105271.

  • Redondo-Gomez, S. (2013). Abiotic and biotic stress tolerance in plants In book: Molecular stress physiology of plants. In G.R. Rout, & A. B. Das (Eds.), Molecular Stress Physiology of Plants (1st ed.), pp.1–20. Springer New Delhi.

  • Sarıoğlu, A., & Kaya, C. (2021). Effect of bacteria and melatonin application on soil microbial activity on soybean plants grown under salt stress and boron toxicity conditions. Harran Journal of Agricultural and Food Sciences, 25(3), 335–348.

    Google Scholar 

  • Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., & Savur, O. B. (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae, 113(1), 92–95.

    Article  Google Scholar 

  • Shen, Z., Ruan, Y., Wang, B., Zhong, S., Su, L., Li, R., & Shen, Q. (2015). Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Applied Soil Ecology, 93, 111–119.

    Article  Google Scholar 

  • Silva, R. M., & Canellas, L. P. (2022). Organic matter in the pest and plant disease control: A meta-analysis. Chemical and Biological Technologies in Agriculture, 9, 70.

    Article  Google Scholar 

  • Tahiri, A., Meddich, A., Raklami, A., Alahmad, A., Bechtaoui, N., et al. (2022). Assessing the potential role of compost, PGPR, and AMF in improving tomato plant growth, yield, fruit quality, and water stress tolerance. Journal of Soil Science and Plant Nutrition, 22, 743–764.

    Article  CAS  Google Scholar 

  • Thallman, A. (1967). Über die mikrobielle Aktivitaet und ihre Beziehungen zur Fruchtbarkeit smerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenase aktivitaet (TTC-Reduktion)-Diss.Giessen-(FRG).

  • Tripathi, R., Tewari, R., Singh, K. P., Keswani, C., Minkina, T., Srivastava, A. K., De Corato, U., & Sansinenea, E. (2022). Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Frontier in Plant Science, 13, 883970.

    Article  Google Scholar 

  • UPOV. (2013). Tomato, guidelines for the conduct of tests for distinctness, uniformity and stability. Website https://www.upov.int/edocs/tgdocs/en/tg044.pdf. Accessed 20 Nov 2022.

  • Wheeler, B. E. J. (1969). An introduction to plant diseases (p. 301). Wiley.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (pp. 315–322). Academic Press.

    Google Scholar 

  • Wu, Y., Zhao, C., Farmer, J., & Sun, J. (2015). Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol. Scientia Horticulturae, 193, 114–120.

    Article  Google Scholar 

  • Yilmaz, S., Duyan, S., Artuk, C., & Diktaş, H. (2014). Mikrobiyolojik Tanımlamada MALDI-TOF MS Uygulamaları, applications of MALDI-TOF MS in microbiological identification. TAF Preventive Medicine Bulletin, 13(5), 421–426.

    Article  Google Scholar 

  • Zhang, X., Yu, D., & Wang, H. (2021). Pepper root rot resistance and pepper yield are enhanced through biological agent G15 soil amelioration. Peer J9, e11768. https://doi.org/10.7717/peerj.11768

Download references

Acknowledgements

The authors are grateful to Ahmet Aydoğdu for providing the compost and to Bayer® for providing the Serenade product utilized in the research. The authors express their gratitude to GAPTAEM and Dr. Mahmut Bayram for generously supplying the tomato seedlings utilized in the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşin Bilgili.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgili, A., Bilgili, A.V. Comparison of compost, PGPR, and AMF in the biological control of tomato Fusarium wilt disease. Eur J Plant Pathol 167, 771–786 (2023). https://doi.org/10.1007/s10658-023-02710-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02710-2

Keywords

Navigation