Skip to main content
Log in

Periwinkle leaf spots and stem lesions caused by Xanthomonas campestris

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A bacterial disease of periwinkle (Catharanthus roseus) was noted in some locations in Mazandaran province of Iran in 1995–1996 and 2016–2017. The affected periwinkle plants had brown necrotic lesions on stems and leaves often late in the growing season. Gram-negative, yellow-pigmented, rod-shaped Xanthomonas-like bacteria were consistently isolated from the infected samples. The isolates were confirmed as belonging to the genus Xanthomonas based on their phenotypic features and partial sequence of the 16S rRNA. Further characterization of the isolates by comparison of the concatenated sequences of five housekeeping genes (gyrB, atpD, rpoD, dnaK, fyuA), with those of Xanthomonas species and pathovars retrieved from GenBank, indicated their closest affiliation with Xanthomonas campestris sensu stricto. In a phylogram constructed by the neighbor joining method the isolates clustered with the named pathovars of X. campestris. Pathogenicity of the isolates was confirmed by inoculation of periwinkle seedlings, reproduction of symptoms and re-isolation of the isolates from the inoculated plants. Attempts to infect any of a set of hosts of the known pathovars of X. campestris sensu stricto were unsuccessful. Likewise, strains of X. c. pv. campestris and X. c. pv. incana were unable to infect periwinkle plants. This is the first report on the occurrence of a periwinkle leaf spot and stem lesion disease caused by a strain of X. campestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ausuble, F., Brent, F. M., Kingestone, R. E., Moor, D. D., Smith, J. A., Seideman, J. G., & Struhl, K. (1992). Current Protocols in Molecular Biology. Greene, Publishing Associates, Wiley Interscience.

  • Ayers, S. H., Rupp, P., & Johnson, W. T. (1919). A study of the alkali-forming bacteria found in milk. US Department of Agriculture Bulletin, 782, 1–39.

  • Basavand, E., Khodaygan, P., Babaeizad, V., Rahimian, H., & Mirhosseini, H. A. (2020). Soft rot disease caused by Klebsiella aerogenes on Austrocylindropuntia subulate in Iran. Indian Phytopathology, 73, 371–372. https://doi.org/10.1007/s42360-020-00201-6

    Article  Google Scholar 

  • Basavand, E., Khodaygan, P., Rahimian, H., Babaeizad, V., & Mirhosseini, H. A. (2021a). Pseudomonas syringae pv. syringae as the new causal agent of cabbage leaf blight. Journal of Phytopathology, 169(4), 253–259. https://doi.org/10.1111/jph.12982

    Article  CAS  Google Scholar 

  • Basavand, E., Khodaygan, P., Rahimian, H., Doonan, J. M., & Pakdin-Parizi, A. (2021b). First report of bacterial canker of fig trees caused by Brenneria nigrifluens. Journal of Phytopathology, 169(7–8), 429–437. https://doi.org/10.1111/jph.12999

    Article  CAS  Google Scholar 

  • Bella, P., Moretti, C., Licciardello, G., Strano, C. P., Pulvirenti, A., Alaimo, S., Zaccardelli, M., Branca, F., Buonaurio, R., Vicente, J. G., & Catara, V. (2019). Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of the pathogen and does not correlate with race distribution. Plant Pathology, 68(2), 278–287. https://doi.org/10.1111/ppa.12946

    Article  CAS  Google Scholar 

  • Borkar, S. G. (2017). Laboratory techniques in plant bacteriology. CRC Press.

    Book  Google Scholar 

  • Fargier, E., & Manceau, C. (2007). Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathology, 56(5), 805–818. https://doi.org/10.1111/j.1365-3059.2007.01648.x

    Article  Google Scholar 

  • Fargier, E., Fischer-Le Saux, M., & Manceau, C. (2011). A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. Systematic and Applied Microbiology, 34(2), 156–165.

    Article  CAS  Google Scholar 

  • Gomila, M., Peña, A., Mulet, M., Lalucat, J., & García-Valdés, E. (2015). Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology, 6, 214. https://doi.org/10.3389/fmicb.2015.00214

    Article  PubMed  PubMed Central  Google Scholar 

  • Ignatov, A., Sechler, A., Schuenzel, E. L., Agarkova, I., Oliver, B., Vidaver, A. K., & Schaad, N. W. (2007). Genetic diversity in populations of Xanthomonas campestris pv. campestris in cruciferous weeds in central coastal California. Phytopathology, 97(7), 803–812. https://doi.org/10.1094/PHYTO-97-7-0803

    Article  CAS  PubMed  Google Scholar 

  • Klement, Z., Rudolph, K., & Sands, D. C. (1990). Methods in Phytobacteriology (p. 568). Akademiai.

    Google Scholar 

  • Koike, S. T., Azad, H. R., & Cooksey, D. A. (2001). Xanthomonas leaf spot of catnip: A new disease caused by a pathovar of Xanthomonas campestris. Plant Disease, 85(11), 1157–1159. https://doi.org/10.1094/PDIS.2001.85.11.1157

    Article  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

  • Lalucat, J., Mulet, M., Gomila, M., & García-Valdés, E. (2020). Genomics in bacterial taxonomy: Impact on the genus Pseudomonas. Genes, 11(2), 139. https://doi.org/10.3390/genes11020139

    Article  CAS  PubMed Central  Google Scholar 

  • Mulet, M., Lalucat, J., & García‐Valdés, E. (2010). DNA sequence‐based analysis of the Pseudomonas species. Environmental Microbiology, 12(6), 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x

  • Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59(2), 264–274. https://doi.org/10.1099/ijs.0.65825-0

    Article  CAS  PubMed  Google Scholar 

  • Popović, T., Jelušić, A., Mitrović, P., Iličić, R., & Marković, S. (2020). Allelic profile of Serbian Xanthomonas campestris pv. campestris isolates from cabbage. Pesticidi i fitomedicina, 35(1), 19–26. https://doi.org/10.2298/PIF2001019

  • Rahimian, H. (1995). Bacterial leaf spot of Zinnia in Mazandaran. Scientific Journal of Agriculture (Experimental Agriculture), 17(2), 1–11.

  • Rahimian, H., & Zarei. (1998). Bacterial canker of Catharanthus roseus incited by a Xanthomonas sp. Proc. 13 the Iran. Plant protec. Congress, 23–26 August, Karaj, Iran, p30b.

  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria (3rd ed.). American Phytopathological Society (APS press).

  • Simões, T. H., Gonçalves, E. R., Rosato, Y. B., & Mehta, A. (2007). Differentiation of Xanthomonas species by PCR-RFLP of rpfB and atpD genes. FEMS Microbiology Letters, 271(1), 33–39. https://doi.org/10.1111/j.1574-6968.2007.00691.x

  • Thompson, J. D., Higgins, G., & Ibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

  • Vauterin, L., Swings, J., Kersters, K., Gillis, M., Mew, T. W., Schroth, M. N., Palleroni, N. J., Hildebrand, D. C., Stead, D. E., Civerolo, E. L., & Hayward, A. C. (1990). Towards an improved taxonomy of Xanthomonas. International Journal of Systematic and Evolutionary Microbiology, 40(3), 312–316. https://doi.org/10.1099/00207713-40-3-312

    Article  CAS  Google Scholar 

  • Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systematic and Evolutionary Microbiology, 45(3), 472–489. https://doi.org/10.1099/00207713-45-3-472

    Article  CAS  Google Scholar 

  • Vicente, J. G., Conway, J., Roberts, S. J., & Taylor, J. D. (2001). Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology, 91(5), 492–499. https://doi.org/10.1094/PHYTO.2001.91.5.492

    Article  CAS  PubMed  Google Scholar 

  • Vicente, J. G., Everett, B., & Roberts, S. J. (2006). Identification of isolates that cause a leaf spot disease of brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology, 96(7), 735–745. https://doi.org/10.1094/PHYTO-96-0735

    Article  CAS  PubMed  Google Scholar 

  • Vicente, J. G., Rothwell, S., Holub, E. B., & Studholme, D. J. (2017). Pathogenic, phenotypic and molecular characterisation of Xanthomonas nasturtii sp. nov. and Xanthomonas floridensis sp. nov., new species of Xanthomonas associated with watercress production in Florida. International Journal of Systematic and Evolutionary Microbiology, 67(9), 3645–3654. https://doi.org/10.1099/ijsem.0.002189

    Article  CAS  PubMed  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

  • Yokoyama, M., & Inomata, S. (1998). Catharanthus roseus (periwinkle): In vitro culture, and high-level production of Arbutin by biotransformation. In medicinal and aromatic plants. Springer.

    Google Scholar 

  • Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31(5), 366–377. https://doi.org/10.1016/j.syapm.2008.06.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Adam J. Bogdanove and Dr. Zoë E. Dubrow for critical feedback. This work was supported by Research and Technology Office, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Basavand.

Ethics declarations

No potential conflicts of interest existed, and this study did not involve human participants or animals. All of the authors agreed to this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basavand, E., Firouzianbandpey, S. & Rahimian, H. Periwinkle leaf spots and stem lesions caused by Xanthomonas campestris. Eur J Plant Pathol 164, 167–176 (2022). https://doi.org/10.1007/s10658-022-02534-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02534-6

Keywords

Navigation