Skip to main content
Log in

Characterization and diagnostic marker development for Yr28-rga1 conferring stripe rust resistance in wheat

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stripe rust is one of the most devastating wheat diseases and developing resistant cultivars is the most economical way to manage this disease. More than 80 stripe rust resistance genes (Yr genes) have formally been mapped. However, a lack of diagnostic markers has partially restricted the deployment of some resistance genes in molecular breeding. Among them, Yr28 showed high-temperature adult plant resistance (HT-APR) to stripe rust in the field, but it is rarely employed in wheat breeding. Here, Yr28-rga1 was found and isolated through the co-segregated marker mwg634 of Yr28. The gene sequence of Yr28-rga1-4A and Yr28-rga1-4B were almost the same between PI648511 and other wheat germplasm, including Chinese Spring (CS), Avocet, Yanzhan1, and Chuanyu12, but Yr28-rga1-4D showed only 88% identity between PI648511 and the others. Further, the high similarity in conserved domains to other wheat R proteins indicated that Yr28-RGA1 was a typical NBS-LRR protein. But the low identity in amino sequences also suggested that it was a novel gene. The specific 3-D protein structure in LRR regions also indicated that Yr28-rga1-4D from PI648511 might have different functional responses to disease. Furthermore, two gene-specific markers of cib-Yr28M1 and cib-Yr28M2 were developed for Yr28-rga1. Only 24 accessions showed identity to PI648511 on Yr28-rga1 locus in a panel of 672 wheat germplasms. The two diagnostic markers also revealed the positive correlation of Yr28-rga1 and stripe rust resistance (R2 > 0.8; p < 0.01) in field testing. These results indicated that the newly characterized Yr28-rga1 was a novel NBS-LRR gene conferring stripe rust resistance. The two diagnostic markers would be useful for marker assisted selection in wheat breeding against stripe rust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL repository - new features and functionality. Nucleic Acids Research, 45, D313–D319.

    CAS  PubMed  Google Scholar 

  • Bouktila, D., Khalfallah, Y., Habachi-Houimli, Y., Mezghani-Khemakhem, M., Makni, M., & Makni, H. (2015). Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Molecular Genetics and Genomics, 290, 257–271.

    CAS  PubMed  Google Scholar 

  • Brar, G. S., Graf, R. J., Knox, R., Campbell, H., & Kutcher, H. (2017). Reaction of differential wheat and triticale genotypes to natural stripe rust [Puccinia striiformis f. sp. tritici] infection in Saskatchewan, Canada. Canadian Journal of Plant Pathology, 39, 239–248.

    Google Scholar 

  • Brar, G. S., Dhariwal, R., & Randhawa, H. S. (2018). Resistance evaluation of differentials and commercial wheat cultivars to stripe rust (Puccinia striiformis) infection in hot spot regions of Canada. European Journal of Plant Pathology, 152, 493–502.

    Google Scholar 

  • Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., & Keller, B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 15253–15258.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., & Dubcovsky, J. (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 323, 1357–1360.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu, Y., Duan, X., Tang, C., Li, X., Voegele, R. T., Wang, X., Wei, G., & Kang, Z. (2014). TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Plant Journal, 78, 16–30.

    CAS  Google Scholar 

  • Gessese, M., Bariana, H., Wong, D., Hayden, M., & Bansal, U. (2019). Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Disease, 103, 1166–1171.

    PubMed  Google Scholar 

  • Gu, L., Si, W., Zhao, L., Yang, S., & Zhang, X. (2015). Dynamic evolution of NBS-LRR genes in bread wheat and its progenitors. Molecular Genetics and Genomics, 290, 727–738.

    CAS  PubMed  Google Scholar 

  • He, C., Zhang, Y., Zhou, W., Guo, Q., Bai, B., Shen, S., & Huang, G. (2019). Study on stripe rust (Puccinia striiformis) effect on grain filling and seed morphology building of special winter wheat germplasm Huixianhong. PLoS One, 14, e0215066.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, L., Brooks, S. A., Li, W., Fellers, J. P., Trick, H. N., & Gill, B. S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 164, 655–664.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, L., Zhang, L. Q., Liu, B. L., Yan, Z. H., Zhang, B., Zhang, Y. L., & Liu, D. C. (2011). Molecular tagging of a stripe rust resistance gene in Aegilops tauschii. Euphytica, 179, 313–318.

    CAS  Google Scholar 

  • Hurni, S., Brunner, S., Buchmann, G., Herren, G., Jordan, T., Krukowski, P., Wicker, T., Yahiaoui, N., Mago, R., & Keller, B. (2013). Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant Journal, 76, 957–969.

    CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC). (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.

    Google Scholar 

  • Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K. F., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., International Wheat Genome Sequencing Consortium, Yang, H., Liu, X., He, Z., Mao, L., & Wang, J. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91–95.

    CAS  PubMed  Google Scholar 

  • Klymiuk, V., Yaniv, E., Huang, L., Raats, D., Fatiukha, A., Chen, S., Feng, L., Frenkel, Z., Krugman, T., Lidzbarsky, G., et al. (2018). Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 9, 3735.

    PubMed Central  PubMed  Google Scholar 

  • Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L. L., & Keller, B. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.

    CAS  PubMed  Google Scholar 

  • Krattinger, S. G., Sucher, J., Selter, L. L., Chauhan, H., Zhou, B., Tang, M., Upadhyaya, N. M., Mieulet, D., Guiderdoni, E., Weidenbach, D., Schaffrath, U., Lagudah, E. S., & Keller, B. (2016). The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnology Journal, 14, 1261–1268.

    CAS  PubMed  Google Scholar 

  • Li, J. Y., Wang, X. D., Zhang, L. R., Meng, Q. F., Zhang, N., Yang, W. X., & Liu, D. Q. (2017). A wheat NBS-LRR gene TaRGA19 participates in Lr19-mediated resistance to Puccinia triticina. Plant Physiology and Biochemistry, 119, 1–8.

    CAS  Google Scholar 

  • Ling, H. Q., Qiu, J. W., Singh, R. P., & Keller, B. (2004). Identification and characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theoretical and Applied Genetics, 109, 1133–1138.

    CAS  PubMed  Google Scholar 

  • Liu, D., Xia, X. C., He, Z. H., & Xu, S. C. (2008). A novel homeoboxlike gene associated with reaction to stripe rust and powdery mildew in common wheat. Phytopathology, 98, 1291–1296.

    CAS  PubMed  Google Scholar 

  • Liu, B., Xue, X., Cui, S., Zhang, X., Han, Q., Zhu, L., Liang, X., Wang, X., Huang, L., Chen, X., & Kang, Z. (2010). Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Molecular Biology Reports, 37, 1045–1052.

    CAS  PubMed  Google Scholar 

  • Liu, W., Frick, M., Huel, R., Nykiforuk, C. L., Wang, X., Gaudet, D. A., Eudes, F., Conner, R. L., Kuzyk, A., Chen, Q., Kang, Z., & Laroche, A. (2014). Stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 7, 1740–1755.

    CAS  PubMed  Google Scholar 

  • Liu, P., Myo, T., Ma, W., Lan, D., Qi, T., Guo, J., Song, P., Guo, J., & Kang, Z. (2016). TaTypA, a ribosome-binding GTPase protein, positively regulates wheat resistance to the stripe rust fungus. Frontiers in Plant Science, 7, 873.

    PubMed Central  PubMed  Google Scholar 

  • Luo, M. C., Gu, Y. Q., Puiu, D., Wang, H., Twardziok, S. O., Deal, K. R., Huo, N., Zhu, T., Wang, L., Wang, Y., et al. (2017). Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551, 498–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz, J., Hsam, S. L. K., Limpert, E., & Zeller, F. J. (1995). Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat) 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity, 74, 152–156.

    Google Scholar 

  • Ma, H., Singh, R. P., & Mujeeb-Kazi, A. (1995). Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 82, 117–124.

    Google Scholar 

  • Marchal, C., Zhang, J., Zhang, P., Fenwick, P., Steuernagel, B., Adamski, N. M., Boyd, L., McIntosh, R., Wulff, B. B. H., Berry, S., Lagudah, E., & Uauy, C. (2018). BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 4, 662–668.

    CAS  PubMed  Google Scholar 

  • McIntosh, R.A., Dubcovsky, J., Rogers W.J., Morris, C., Appels, R., Xia, X.C. (2016). Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp. Accessed Dec 2016.

  • Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 15, 809–834.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miranda, L. M., Murphy, J. P., Leath, S., & Marshall, D. S. (2006). Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat. Theoretical and Applied Genetics, 113, 1497–1504.

    CAS  PubMed  Google Scholar 

  • Miranda, L. M., Murphy, J. P., Marshall, D., Cowger, C., & Leath, S. (2007). Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 1451–1456.

    CAS  PubMed  Google Scholar 

  • Moore, J. W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., Lillemo, M., Viccars, L., Milne, R., Periyannan, S., Kong, X., Spielmeyer, W., Talbot, M., Bariana, H., Patrick, J. W., Dodds, P., Singh, R., & Lagudah, E. (2015). A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 47, 1494–1498.

    CAS  PubMed  Google Scholar 

  • Periyannan, S., Moore, J., Ayliffe, M., Bansal, U., Wang, X., Huang, L., Deal, K., Luo, M., Kong, X., Bariana, H., Mago, R., McIntosh, R., Dodds, P., Dvorak, J., & Lagudah, E. (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 341, 786–788.

    CAS  PubMed  Google Scholar 

  • Periyannan, S., Bansal, U., Bariana, H., Deal, K., Luo, M. C., Dvorak, J., & Lagudah, E. (2014). Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theoretical and Applied Genetics, 127, 947–955.

    CAS  PubMed  Google Scholar 

  • Raupp, W. J., Sukhwinder-Singh, Brown-Guerdira, G. L., & Gill, B. S. (2001). Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theoretical and Applied Genetics, 102, 347–352.

    CAS  Google Scholar 

  • Ren, R. S., Wang, M. N., Chen, X. M., & Zhang, Z. J. (2012). Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics, 125, 847–857.

    CAS  PubMed  Google Scholar 

  • Saintenac, C., Zhang, W., Salcedo, A., Rouse, M. N., Trick, H. N., Akhunov, E., & Dubcovsky, J. (2013). Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science, 341, 783–786.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salamini, F., Ozkan, H., Brandolini, A., Schafer-Pregl, R., & Martin, W. (2002). Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics, 3, 429–441.

    CAS  PubMed  Google Scholar 

  • Sayed-Tabatabaei, B. E., Komatsuda, T., Takaiwa, F., & Graner, A. (1999). DNA sequencing and primer designing for RFLP clones evenly distributed in the barley genome. Barley Genetics Newsletter, 28, 15–18.

    Google Scholar 

  • Schwessinger, B. (2017). Fundamental wheat stripe rust research in the 21st century. New Phytologist, 213, 1625–1631.

    CAS  Google Scholar 

  • Singh, R. P., Nelson, J. C., & Sorrells, M. E. (2000). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40, 1148–1155.

    CAS  Google Scholar 

  • Song, W., Wang, B., Li, X., Wei, J., Chen, L., Zhang, D., Zhang, W., & Li, R. (2015). Identification of immune related LRR-containing genes in maize (Zea mays L.) by genome-wide sequence analysis. International Journal of Genomics, 2015, 231358.

    PubMed Central  PubMed  Google Scholar 

  • Tan, S., & Wu, S. (2012). Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comparative and Functional Genomics, 2012, 418208.

    PubMed Central  PubMed  Google Scholar 

  • Thomas, J., Nilmalgoda, S., Hiebert, C., McCallum, B., Humphries, G., & DePauw, R. (2010). Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Science, 50, 2310–2317.

    Google Scholar 

  • Wang, J., Tao, F., An, F., Zou, Y., Tian, W., Chen, X., Xu, X., & Hu, X. (2017). Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 18, 649–661.

    CAS  PubMed  Google Scholar 

  • Yahiaoui, N., Srichumpa, P., Dudler, R., & Keller, B. (2004). Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant Journal, 37, 528–538.

    CAS  Google Scholar 

  • Yang, X., & Wang, J. (2016). Genome-wide analysis of NBS-LRR genes in Sorghum genome revealed several events contributing to NBS-LRR gene evolution in grass species. Evolutionary Bioinformatics Online, 12, 9–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu, G., Zhang, Q., Friesen, T. L., Rouse, M. N., Jin, Y., Zhong, S., Rasmussen, J. B., Lagudah, E. S., & Xu, S. S. (2015). Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theoretical and Applied Genetics, 128, 431–443.

    CAS  PubMed  Google Scholar 

  • Zhang, W., Chen, S., Abate, Z., Nirmala, J., Rouse, M. N., & Dubcovsky, J. (2017). Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proceedings of the National Academy of Sciences of the United States of America, 114, E9483–E9492.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, R. Q., Singh, R. P., Lillemo, M., He, X. Y., Randhawa, M. S., Huerta-Espino, J., Singh, P. K., Li, Z. K., & Lan, C. X. (2019). Two main stripe rust resistance genes identified in synthetic-derived wheat line Soru#1. Phytopathology, 109, 120–126.

    PubMed  Google Scholar 

  • Zheng, S. G., Li, Y. F., Lu, L., Liu, Z. H., Zhang, C. H., Ao, D. H., Li, L. R., Zhang, C. Y., Liu, R., Luo, C. P., Wu, Y., & Zhang, L. (2017). Evaluating the contribution of Yr genes to stripe rust resistance breeding through marker-assisted detection in wheat. Euphytica, 213, 50.

    Google Scholar 

  • Zhou, T., Wang, Y., Chen, J. Q., Araki, H., Jing, Z., Jiang, K., Shen, J., & Tian, D. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR–NBS–LRR genes. Molecular Genetics and Genomics, 271, 402–415.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the program of breeding new wheat varieties with high-yield, high-quality and high-resistance in southwest of China (NO. 2017YFD0100900), and the National Natural Science Foundation of China (General Program, No. 31371608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or other conflicts of interest in relation to this research and its publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

Fig. S1

(PDF 701 kb)

Table S1

(PDF 169 kb)

Table S2

(PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Wu, Y., Zhou, M. et al. Characterization and diagnostic marker development for Yr28-rga1 conferring stripe rust resistance in wheat. Eur J Plant Pathol 156, 623–634 (2020). https://doi.org/10.1007/s10658-019-01912-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01912-x

Keywords

Navigation