Skip to main content
Log in

Effects of stressful physico-chemical factors on the fitness of the plant pathogenic bacterium Dickeya solani

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Dickeya solani is a pectinolytic bacterium that causes significant losses of potato crops. Interaction between bacteria and plant during infection and transmission within the host tissue are associated with a variety of challenges, including exposure to physico-chemical factors that induce osmotic, acidic, oxidative or thermal stresses. In this work, we tested the effects of various potentially adverse conditions on growth and fitness of the D. solani IPO2222 type strain. We found the bacteria were able to withstand a great variety of stressful conditions. Treatment with high concentrations of osmolytes (up to 1.6 Osm), low pH (5.0), or elevated temperature (up to 40 °C) was still tolerated. Short term exposure to these conditions did not impair the ability of bacteria to macerate potato tuber tissue. However, D. solani was sensitive to a relatively low content (above 0.5 mM) of the oxidant H2O2 and treatment with this oxidant caused a loss of culturability. All used stressful conditions are known to affect the stability, and structure of proteins and induction of the folding stress-related genes, dnaK, dnaJ and groEL, was observed in most cases. The only exception was oxidative stress for which the chaperone genes were slightly down-regulated. This observation is in line with a low tolerance of D. solani to H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, S., Lee, S. Y., Kong, H. G., Jo, E. J., Choi, H. K., Khan, R., & Lee, S. W. (2016). Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. Public Library of Science. https://doi.org/10.1371/journal.pone.0160845.

  • Andersson RA, Kõiv V, Norman-Setterblad C, Pirhonen M. (1999) Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora. Microgiology, https://doi.org/10.1099/00221287-145-12-3547.

  • Bednarska, N. G., Schymkowitz, J., Rousseau, F., & Van Eldere, J. (2013). Protein aggregation in bacteria: The thin boundary between functionality and toxicity. Microbiology. https://doi.org/10.1099/mic.0.069575-0.

  • Boughammoura, A., Expert, D., & Franza, T. (2012). Role of the Dickeya dadantii Dps protein. Biometals, 25, 423–433. https://doi.org/10.1007/s10534-011-9515-5.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A. D. (1964). Aspects of bacterial response to the ionic environment. Bacteriological Reviews, 28, 296–329.

    Article  CAS  Google Scholar 

  • Chang, J., Coleman, S., Lee, Y. E., & Schellenberg-Beaver, T. (2014). Differential effects of sucrose or NaCl osmotic shock on β-galactosidase activity in Escherichia coli BW25993 is dependent on normalization method by total viable count or total protein content. Journal of Experimental Microbiology and Immunology, 18, 54–59.

    Google Scholar 

  • Chen, X., Li, L., Wang, H., Huang, Y., Wang, M., & Zhang, C. (2016). Phenotypic fingerprints of Ralstonia solanacearum under various osmolytes and pH environments. Plant Pathology Journal. https://doi.org/10.3923/ppj.2016.102.107.

  • Cheung, C., Lee, J., Lee, J., & Shevchuk, O. (2009). The effect of ionic (NaCl) and non-ionic (sucrose) osmotic stress on the expression of β-galactosidase in wild type E.coli BW25993 and in the isogenic BW25993ΔlacI mutant. Journal of Experimental Microbiology and Immunology, 13, 1–6.

    Google Scholar 

  • Chiang, S. M., & Schellhorn, H. E. (2012). Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Archives of Biochemistry and Biophysics. https://doi.org/10.1016/j.abb.2012.02.007.

  • Czajkowski R, de Boer WJ, Velvis H, van der Wolf JM. (2010) Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. Biovar 3. Phytopathology, https://doi.org/10.1094/PHYTO-100-2-0134.

  • Degefu Y, Potrykus M, Golanowska M, Virtanen E, and Lojkowska E. (2013), A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology, https://doi.org/10.1111/aab.12020.

  • Delaney, J. M. (1990). Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H2O2. Journal of General Microbiology, 136(21), 13–21.

    Google Scholar 

  • Du Raan, S., Coutinho, T. A., & van der Waals, J. E. (2016). Cardinal temperature differences, determined in vitro, between closely related species and subspecies of pectinolytic bacteria responsible for blackleg and soft rot on potatoes. European Journal of Plant Pathology, 144, 361–369. https://doi.org/10.1007/s10658-015-0773-x.

    Article  Google Scholar 

  • Elphinstone, J. G., & Perombelon, M. C. (1986). Contamination of potatoes by Erwinia carotovora during grading. Plant Pathology. https://doi.org/10.1111/j.1365-3059.1986.tb01977.x.

  • Ericsson, M., Tärnvik, A., Kuoppa, K., Sandström, G., & Sjöstedt, A. (1994). Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infection Immunity, 62(1), 178–183.

    Article  CAS  Google Scholar 

  • Figaj, D., Gieldon, A., Bartczak, M., Koper, T., Zarzecka, U., Lesner, A., Lipinska, B., & Skorko-Glonek, J. (2016). The LD loop as an important structural element required for transmission of the allosteric signal in the HtrA (DegP) protease from Escherichia coli. The FEBS Journal. https://doi.org/10.1111/febs.13822.

  • Fujihara, S., & Yoneyama, T. (1993). Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017. Applied and Environmental Microbiology, 59(4), 1104–1109.

    Article  CAS  Google Scholar 

  • Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D., & Pugin, A. (2006). Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-19-0711.

  • Gloux, K., Touze, T., Pagot, Y., Jouan, B., & Blanco, C. (2005). Mutations of ousA alter the virulence of Erwinia chrysanthemi. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-18-0150.

  • Golanowska, M., & Lojkowska, E. (2016). A review on Dickeya solani, a new pathogenic bacterium causing loss in potato yield in Europe. BioTechnologia Journal of Biotechnology, Computational Biology and Bionanotechnology. https://doi.org/10.5114/bta.2016.60781.

  • Golanowska, M., Kielar, J., & Lojkowska, E. (2017). The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. European Journal of Plant Pathology, 147, 803–817. https://doi.org/10.1007/s10658-016-1044-1.

    Article  Google Scholar 

  • Golanowska, M., Potrykus, M., Motyka-Pomagruk, A., Kabza, M., Bacci, G., Galardini, M., Bazzicalupo, M., Makalowska, I., Smalla, K., Mengoni, A., Hugouvieux-Cotte-Pattat, N., & Lojkowska, E. (2018). Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.01940.

  • Gorshkov, V., Islamov, B., Mikshina, P., Petrova, O., Burygin, G., Sigida, E., Shashkov, A., Daminova, A., Ageeva, M., Idiyatullin, B., Salnikov, V., Zuev, Y., Gorshkova, T., & Gogolev, Y. (2017). Pectobacterium atrosepticum exopolysaccharides: Identification, molecular structure, formation under stress and in planta conditions. Glycobiology. https://doi.org/10.1093/glycob/cwx069.

  • Gouesbet, G., Jebbar, M., Bonnassie, S., Hugouvieux-Cotte-Pattat, N., Himdi-Kabbab, S., & Blanco, C. (1995). Erwinia chrysanthemi at high osmolarity: Influence of osmoprotectants on growth and pectate lyase production. Microbiology. https://doi.org/10.1099/13500872-141-6-1407.

  • Grignon, C., & Sentenac, H. (1991). pH and ionic conditions in the apoplast. Annual Review of Plant Physiology and Plant Molecular Biology. https://doi.org/10.1146/annurev.pp.42.060191.000535.

  • Haque, M. M., Kabir, M. S., Aini, L. Q., Hirata, H., & Tsuyumu, S. (2009). SlyA, a MarR family transcriptional regulator, is essential for virulence in Dickeya dadantii 3937. Journal of Bacteriology. https://doi.org/10.1128/JB.00240-09.

  • Hommais, F., Oger-Desfeux, C., Van Gijsegem, F., Castang, S., Ligori, S., Expert, D., Nasser, W., & Reverchon, S. (2008). PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. Journal of Bacteriology. https://doi.org/10.1128/JB.00553-08.

  • Jahn, C. E., Selimi, D. A., Barak, J. D., & Charkowski, A. O. (2011). The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology. https://doi.org/10.1099/mic.0.051003-0.

  • Jiang, X., Zghidi-Abouzid, O., Oger-Desfeux, C., Hommais, F., Greliche, N., Muskhelishvili, G., Nasser, W., & Reverchon, S. (2016). Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. Environmental Microbiology. https://doi.org/10.1111/1462-2920.13267.

  • Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., & Hartl, F. U. (2013). Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry. https://doi.org/10.1146/annurev-biochem-060208-092442.

  • Kraepiel, Y., & Barny, M. A. (2016). Gram-negative phytopathogenic bacteria, all hemibiotrophs after all? Molecular Plant Pathology. https://doi.org/10.1111/mpp.12345.

  • Leonard, S., Hommais, F., Nasser, W., & Reverchon, S. (2017). Plant-phytopathogen interactions: Bacterial responses to environmental and plant stimuli. Environmental Microbiology. https://doi.org/10.1111/1462-2920.13611.

  • Li J, Wang N. (2011) The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Molecular Plant Pathology, https://doi.org/10.1111/j.1364-3703.2010.00681.x.

  • Liberek, K., Lewandowska, A., & Zietkiewicz, S. (2008). Chaperones in control of protein disaggregation. EMBO Journal. https://doi.org/10.1038/sj.emboj.7601970.

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K. (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiologia Plantarum, https://doi.org/10.1034/j.1399-3054.2001.1110405.x.

  • Lund, P. A. (2001). Microbial molecular chaperones. Advances in Microbial Physiology. https://doi.org/10.1016/S0065-2911(01)44012-4.

  • Mandin, P., & Gottesman, S. (2010). Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO Journal. https://doi.org/10.1038/emboj.2010.179.

  • Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology. https://doi.org/10.1111/J.1364-3703.2012.00804.x.

  • Miller, J. H. (1992). A short course in bacterial genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Miller, S. B., Mogk, A., & Bukau, B. (2015). Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. Journal of Molecular Biology. https://doi.org/10.1016/j.jmb.2015.02.006.

  • Morgan, R. W., Christman, M. F., Jacobson, F. S., Storz, G., & Ames, B. N. (1986). Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proceedings of the National Academy of Sciences of the United States of America, 83(21), 8059–8063.

    Article  CAS  Google Scholar 

  • Oliver, J. D. (2005). The viable but nonculturable state in bacteria. Journal of Microbiology, 43, 93–100.

    Google Scholar 

  • Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews. https://doi.org/10.1111/j.1574-6976.2009.00200.x.

  • Ordax, M., Marco-Noales, E., L’opez, M. M., & Biosca, E. G. (2006). Survival strategy of Erwinia amylovora against copper: Induction of the viable-but-nonculturable state. Applied Environmental Microbiology. https://doi.org/10.1128/AEM.72.5.3482-3488.2006.

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research. https://doi.org/10.1093/nar/29.9.e45.

  • Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.

    Article  Google Scholar 

  • Potrykus, M., Golanowska, M., Hugouvieux-Cotte-Pattat, N., & Lojkowska, E. (2014). Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-09-13-0270-R.

  • Potrykus M, Golanowska M, Sledz W, Zoledowska S, Motyka A, Kolodziejska A, Butrymowicz J, Lojkowska E. (2016) Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Disease, https://doi.org/10.1094/PDIS-04-15-0439-RE.

  • Pritchard, L., Humphris, S., Baeyen, S., Maes, M., Van Vaerenbergh, J., Elphinstone, J., Saddler, G., & Toth, I. (2013). Draft genome sequences of four Dickeya dianthicola and four Dickeya solani strains. Genome Announcements. https://doi.org/10.1128/genomeA.00087-12.

  • Raser JM, O’Shea EK. (2005) Noise in gene expression: origins, consequences, and control. Science, https://doi.org/10.1126/science.1105891.

  • Reverchon, S., & Nasser, W. (2013). Dickeya dadantii pathogenicity. Environmental Microbiology Reports. https://doi.org/10.1111/1758-2229.12073.

  • Reverchon, S., Van Gijsegem, F., Effantin, G., Zghidi-Abouzid, O., & Nasser, W. (2010). Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH. Molecular Microbiology. https://doi.org/10.1111/j.1365-2958.2010.07388.x.

  • Río-Álvarez, I., Muñoz-Gómez, C., Navas-Vásquez, M., Martínez-García, P. M., Antúnez-Lamas, M., Rodríguez-Palenzuela, P., & López-Solanilla, E. (2014). Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12227.

  • Santander, R. D., Oliver, J. D., & Biosca, E. G. (2014). Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation. FEMS Microbiology Ecology. https://doi.org/10.1111/1574-6941.12290.

  • Shabala, L., Bowman, J., Brown, J., Ross, T., McMeekin, T., & Shabala, S. (2009). Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environmental Microbiology. https://doi.org/10.1111/j.1462-2920.2008.01748.x.

  • Tondo ML, Delprato ML, Kraiselburd I, Fernández Zenoff MV, Farías ME, Orellano EG. (2016) KatG, the Bifunctional catalase of Xanthomonas citri subsp. citri, responds to hydrogen peroxide and contributes to epiphytic survival on citrus leaves. Public Library of Science, https://doi.org/10.1371/journal.pone.0151657.

  • Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., & Tsror (Lahkim) L, Elphinstone JG. (2011). Dickeya species: An emerging problem for potato production in Europe. Plant Pathology. https://doi.org/10.1111/j.1365-3059.2011.02427.

  • van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, Elphinstone JG, Pritchard L, Toth IK, Lojkowska E, Potrykus M, Waleron M, de Vos P, Cleenwerck I, Pirhonen M, Garlant L, Helias V, Pothier JF, Pflüger V, Duffy B, Tsror L, Manulis S. (2014) Dickeya solani sp. nov., a pectinolytic plant pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijs.0.052944-0.

  • van Overbeek, L. S., Bergervoet, J. H., Jacobs, F. H., & van Elsas, J. D. (2004). The low-temperature-induced viable-but-nonculturable state affects the virulence of Ralstonia solanacearum Biovar 2. Phytopathology. https://doi.org/10.1094/PHYTO.2004.94.5.463.

  • Venisse, J. S., Barny, M. A., Paulin, J. P., & Brisset, M. N. (2003). Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear. FEBS Letters, 537(1–3), 198–202.

    Article  CAS  Google Scholar 

  • Vrancken, K., Holtappels, M., Schoofs, H., Deckers, T., & Valcke, R. (2013). Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiology. https://doi.org/10.1099/mic.0.064881-0.

  • Wojtaszek, P. (1997). Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 322(3), 681–692.

    Article  CAS  Google Scholar 

  • Wright CA, Beattie GA. (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. PNAS, https://doi.org/10.1073/pnas.0400461101.

Download references

Acknowledgements

The research was supported by the grant NCN OPUS-7 UMO-2014/13/B/ NZ9/02021 of National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Contributions

Joanna Skorko-Glonek, Tomasz Przepiora and Donata Figaj contributed to the study conception and design.

Material preparation, data collection and analysis were performed by Tomasz Przepiora, Donata Figaj, Malgorzata Apanowicz, Malgorzata Sieradzka, Patrycja Ambroziak, Marta Radzinska and Joanna Skorko-Glonek.

The first draft of the manuscript was written by Joanna Skorko-Glonek, Tomasz Przepiora, and Donata Figaj.

Nicole Hugouvieux-Cotte-Pattat and Ewa Lojkowska commented on first draft of the manuscript.

All authors read and approved the final manuscript.

Conceptualization: Joanna Skorko-Glonek;

Methodology: Tomasz Przepiora, Donata Figaj;

Formal analysis and investigation: Joanna Skorko-Glonek, Tomasz Przepiora, Donata Figaj;

Writing - original draft preparation: Joanna Skorko-Glonek, Tomasz Przepiora, Donata Figaj;

Writing - review and editing: Joanna Skorko-Glonek, Nicole Hugouvieux-Cotte-Pattat, Ewa Lojkowska, Tomasz Przepiora, Malgorzata Apanowicz, Malgorzata Sieradzka, Donata Figaj;

Funding acquisition: Joanna-Skorko-Glonek;

Supervision: Joanna Skorko-Glonek.

Corresponding author

Correspondence to Joanna Skorko-Glonek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Do not apply. No individual participant was included in the study.

Electronic supplementary material

Supplementary Table 1

Stress conditions used in the experiments. (DOCX 16 kb)

Supplementary Table 2

Growth conditions of the D. solani IPO2222 cultures used for the potato tuber maceration tests. (DOCX 12 kb)

Supplementary Figure 1

Cultivability and viability ofD. solaniIPO2222 under sucrose hyperosmotic stress. Bacteria were grown in minimal medium M63Y under microaerobic conditions to the stationary (a-d) or exponential growth phase (e-h) and subsequently exposed to the osmolyte. To measure colony formation, aliquots of cultures grown in the presence of 0.32 M sucrose at 30 °C (a and e) or 37 °C (b and f) were withdrawn 1 h and 4 h after addition of sucrose. The CFU ml−1 was determined by plating serial dilutions of bacteria. A content of living cells (%) was estimated by fluorescent staining. Panels c and g represent samples incubated at 30 °C, panels d and h at 37 °C. Controls represent untreated samples. Values shown are means of at least three independent experiments and the standard deviations (SD) are represented by error bars. (PDF 425 kb)

Supplementary Figure 2

Ability ofD. solanito withstand oxidative or/and acid stress. Bacteria were grown at 30 °C in minimal medium M63Y under micro-aerobic conditions to the exponential growth phase and subsequently exposed to stressful conditions (H2O2 and/or pH = 5.0) for 1 h or 4 h, at 30 °C (a) or 37 °C (b). Controls represent not treated samples. Values shown are means of at least three independent experiments and the standard deviations (SD) are represented by error bars, * denote statistically significant differences between control and treated samples. The content of living cells (%) was estimated by fluorescent staining. Pictures c and d show examples of fluorescent staining: (c) bacteria incubated for four hours at 37 °C; (d) 37 °C, pH 5.0 and 0.25 mM H2O2. (PDF 277 kb)

Supplementary Figure 3

Effects of oxidative stress on cultivability of the exponential growth phaseD. solanicells IPO2222, IFB0223, IFB0099, IFB0158 and IFB0484. Bacteria were grown in minimal medium M63Y under micro-aerobic conditions to the exponential growth phase and subsequently exposed to stressful conditions. Following 1 h (panels a-c and g-i) or 4 h of exposure to the oxidant (panels d-f and j-l), serial dilutions of bacterial cells were spotted onto the M63Y agar plates and incubated at 30 °C (a-f) or 37 °C (g-l). Panels a, d, g and j show the control (untreated) cell counts. H2O2 was used at a concentration of 0.1 mM (b, e, h, k) or 0.25 mM (c, f, i, l). The roman numbers at the top of the panels indicate the bacterial strain (I – IPO2222, II – IFB0223, III – IFB0099, IV – IFB0158, V – IFB0484). The figure shows representative examples of at least three independent experiments. (PDF 687 kb)

Supplementary Figure 4

Effects of oxidative stress on cultivability of the stationary growth phaseD. solanicells IPO2222, IFB0223, IFB0099, IFB0158 and IFB0484. Bacteria were grown in minimal medium M63Y under micro-aerobic conditions to the stationary growth phase and subsequently treaded as described before supplemental Fig. 3. The roman numbers at the top of the panels indicate the bacterial strain (I – IPO2222, II – IFB0223, III – IFB0099, IV – IFB0158, V – IFB0484). The figure shows representative examples of at least three independent experiments. (PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przepiora, T., Figaj, D., Radzinska, M. et al. Effects of stressful physico-chemical factors on the fitness of the plant pathogenic bacterium Dickeya solani. Eur J Plant Pathol 156, 519–535 (2020). https://doi.org/10.1007/s10658-019-01902-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01902-z

Keywords

Navigation