Skip to main content

Advertisement

Log in

Effect of temperature on severity of Fusarium wilt of cabbage caused by Fusarium oxysporum f. sp. conglutinans

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The effect of temperature on severity of Fusarium wilt of cabbage caused by pathogen Fusarium oxysporum f. sp. conglutinans was assessed. The pathogen was first tested in vitro for growth under different temperatures of 15, 18, 24, 28 and 37 °C. Based on the results, several temperature variants were selected to test the effect of temperature on the infection of plants grown in substrate. Two susceptible and one resistant variety were chosen for the testing. Cabbage plants were cultivated at temperatures of 16/18 °C, 19/21 °C, 22/24 °C and 26/28 °C. Susceptible varieties showed more severe symptoms and greater plant die-off at higher temperatures (22/24 °C and 26/28 °C), compared to lower temperatures (16/18 °C and 19/21 °C). For the resistant variety, the highest incidence of wilt symptoms was observed at 26/28 °C, while the degree of infection was the same as in susceptible plants at lower temperatures. PCR analysis demonstrated that plants grown at lower temperatures with minimum symptoms were also infected with the pathogen. The study suggested losses due to Fusarium wilt could be reduced by cultivating cabbages during colder periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angadi, S. V., Cutforth, H. W., Miller, P. R., McConkey, B. G., Entz, M. H., Brandt, S. A., & Volkmar, K. M. (2000). Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science, 80(4), 693–701.

    Article  Google Scholar 

  • Balasu, A. G., Cristea, S., Zala, C. R., & Oprea, M. (2015). The biological growth parameters of the Fusarium oxysporum f. sp. glycines fungus. Romanian Biotechnological Letters, 20(6), 10 921–10 928.

    Google Scholar 

  • Cha, S.-D., Jeon, Y.-J., Ahn, G.-R., Han, J. I., Han, K.-H., & Kim, S. H. (2007). Characterization of Fusarium oxysporum isolated from Paprika in Korea. Mycobiology, 35(2), 91–96.

    Article  Google Scholar 

  • Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325.

    Article  Google Scholar 

  • Dzhalilov, F. S., & Ha, V. T. N. (2014). Cabbage diseases control in field. Potato and Vegetables, 54, 20–23.

    Google Scholar 

  • Epstein, L., Kaur, S., Chang, P. L., Carrasquilla-Garcia, N., Lyu, G., Cook, D. R., Subbarao, K. V., & O’Donnell, K. (2017). Races of the celery pathogen Fusarium oxysporum f. sp. apii are polyphyletic. Phytopathology, 107, 463–473.

    Article  CAS  Google Scholar 

  • Farooq, S., Iqbal, S. M., & Rauf, C. A. (2005). Physiological studies of Fusarium oxysporum f. sp. ciceri. International Journal of Agriculture & Biology, 7(2), 275–277.

    Google Scholar 

  • Fayzalla, E. A., Shabana, Y. M., & Mahmoud, N. S. (2008). Effect of environmental conditions on wilting and root rot fungi pathogenic to solanaceous plants. Plant Pathology Journal, 7(1), 27–33.

    Article  Google Scholar 

  • Flood, J. (2006). A review of Fusarium wilt of oil palm caused by Fusarium oxysporum f. sp. elaeidis. Phytopathology, 96, 660–662.

    Article  Google Scholar 

  • Fovo, J. D., Dostaler, D., & Bernier, L. (2017). Influence of culture media and temperature on growth and sporulation of Lasiodiplodia theobromae, Pestalotiopsis microspora and Fusarium oxysporum isolated from Ricinodendron heudelotii in Cameroon. International Journal of Current Microbiology and Applied Sciences, 6(6), 3098–3112.

    Article  CAS  Google Scholar 

  • Fravel, D. R., Stosz, S. K., & Larkin, R. P. (1996). Effect of temperature, soil type, and matric potential on proliferation and survival of Fusarium oxysporum f. sp. erythroxyli from Erythroxylum coca. Phytopathology, 86, 236–240.

    Article  Google Scholar 

  • Gaetán, S. A. (2005). Occurrence of Fusarium wilt on canola caused by Fusarium oxysporum f. sp. conglutinans in Argentina. Plant Disease, 89, 432.

    Article  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2006). Evidence for an expanded host range of Fusarium oxysporum f. sp. raphani. Phytoparasitica, 34(2), 115–121.

    Article  Google Scholar 

  • Gupta, V. K., Misra, A. K., & Gaur, R. K. (2010). Growth characteristics of Fusarium spp. causing wilt disease in Psidium guajava L. in India. Journal of Plant Protection Research, 50(4), 452–462.

    Article  Google Scholar 

  • Hibar, K., Daami-Remadi, M., Jabnoun-Khiareddine, H., & El Mahjoub, M. (2006). Temperature effect on mycelial growth and on disease incidence of Fusarium oxysporum f.sp. radicis-lycopersici. Plant Pathology Journal, 5(2), 233–238.

    Article  Google Scholar 

  • Jiménez-Díaz, R. M., Castillo, P., Jiménez-Gasco, M. M., Landa, B. B., & Navas-Cortés, J. A. (2015). Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection, 73, 16–27.

    Article  Google Scholar 

  • Kendrick, J. B. (1930). Kale yellows in California, caused by Fusarium conglutinans Wollenw. Hilgardia, 5(1), 1–15.

    Article  Google Scholar 

  • Kochman, J. (2007). Fusarium oxysporum f. sp. Conglutinans. Fusarium wilt of canola. Plant Health Australia. http://www.planthealthaustralia.com.au/pests/fusarium-wilt-of-canola/. Accessed 5 December 2018.

  • Koike, S. T., Gladders, P., & Paulus, A. O. (2007). Vegetables diseases. London: Manson Publishing Ltd..

    Google Scholar 

  • Landa, B. B., Navas-Cortés, J. A., Hervás, A., & Jiménez-Díaz, R. M. (2001). Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology, 91(8), 807–816.

    Article  CAS  Google Scholar 

  • Landa, B. B., Navas-Cortés, J. A., Jiménez-Gasco, M. M., Katan, J., Retig, B., & Jiménez-Diáz, R. M. (2006). Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of Fusarium wilt. Plant Disease, 90, 365–374.

    Article  Google Scholar 

  • Lange, R. M., Gossmann, M., & Büttner, C. (2007). Yield loss in susceptible cultivars of spring rapeseed due to Fusarium wilt caused by Fusarium oxysporum. Communications in Agricultural and Applied Biological Sciences, 72(4), 723–734.

    CAS  PubMed  Google Scholar 

  • Larkin, R. P., & Fravel, D. R. (2002). Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology, 92, 1160–1166.

    Article  Google Scholar 

  • Liu, X., Ling, J., Xiao, Z., Xie, B., Fang, Z., Yang, L., Zhang, Y., Lv, H., & Yang, Y. (2017). Characterization of emerging populations of Fusarium oxysporum f. sp. conglutinans causing cabbage wilt in China. Journal of Phytopathology, 165(11–12), 813–821.

    Article  CAS  Google Scholar 

  • Luhová, L., Lebeda, A., Kutrová, E., Hedererová, D., & Peč, P. (2006). Peroxidase, catalase, amine oxidase and acid phosphatase activities in Pisum sativum during infection with Fusarium oxysporum and F. solani. Biologia Plantarum, 50(4), 675–682.

    Article  Google Scholar 

  • Mogensen, J. M., Nielsen, K. F., Samson, R. A., Frisvad, J. C., & Thrane, U. (2009). Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiology, 9, 281.

    Article  Google Scholar 

  • Mohsen, L. Y., Al-Janabi, J. K. A., & Jebor, M. A. (2016). The effect of some environmental conditions on the growth and activity of the external enzymes for five sp. of Fusarium. Journal of Babylon University. Pure and Applied Sciences, 24, 630–646.

    Google Scholar 

  • Morrison, M. J., McVetty, P. B. E., & Shaykewich, C. F. (1989). The determination and verification of a baseline temperature for the growth of Westar summer rape. Canadian Journal of Plant Science, 69(2), 455–464.

    Article  Google Scholar 

  • Navas-Cortés, J. A., Landa, B. B., Méndez-Rodríguez, M. A., & Jiménez-Díaz, R. M. (2007). Quantitative modeling of the effects of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris races 0 and 5 on development of Fusarium wilt in chickpea cultivars. Phytopathology, 97, 564–573.

    Article  Google Scholar 

  • Ramamoorthy, V., Raguchander, T., & Samiyappan, R. (2002). Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant and Soil, 239(1), 55–68.

    Article  CAS  Google Scholar 

  • Rosa, E. A. S., & Rodrigues, P. M. F. (1998). The effect of light and temperature on glucosinolate concentration in the leaves and roots of cabbage seedlings. Journal of the Science of Food and Agriculture, 78(2), 208–212.

    Article  CAS  Google Scholar 

  • Scott, J. C., Gordon, T. R., Shaw, D. V., & Koike, S. T. (2010). Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Disease, 94, 13–17.

    Article  CAS  Google Scholar 

  • Shabani, F., Kumar, L., & Esmaeili, A. (2014). Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment, 197, 96–105.

    Article  Google Scholar 

  • Somu, R., & Thammaiah, N. (2015). Physiological studies of Fusarium oxysporum f. sp. cubense causing panama wilt in banana. The Bioscan, 10(4), 1721–1724.

    CAS  Google Scholar 

  • Webb, K. M., Brenner, T., & Jacobsen, B. J. (2015). Temperature effects on the interactions of sugar beet with Fusarium yellows caused by Fusarium oxysporum f. sp. betae. Canadian Journal of Plant Pathology, 37(3), 353–362.

    Article  CAS  Google Scholar 

  • Wszelaki, A., & Kleinhenz, M. D. (2003). Yield and relationships among head traits in cabbage as influenced by planting date and cultivar. II. Processing. HortScience, 38(7), 1355–1359.

    Article  Google Scholar 

  • Yaniv, Z., Schafferman, D., & Zur, M. (1995). The effect of temperature on oil quality and yield parameters of high- and low-erucic acid Cruciferae seeds (rape and mustard). Industrial Crops and Products, 3(4), 247–251.

    Article  Google Scholar 

  • Zhang, J., Ling, J., Xie, B., & Yang, Y. (2014). Rapid detection and identification of Fusarium oxysporum f. sp. conglutinans race 1 and race 2. Acta Phytopathologica Sinica, 44(6), 586–594.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Agriculture of the Czech Republic within the project NAZV QJ1510088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Jelínek.

Ethics declarations

This study did not involve any human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelínek, T., Koudela, M., Kofránková, V. et al. Effect of temperature on severity of Fusarium wilt of cabbage caused by Fusarium oxysporum f. sp. conglutinans. Eur J Plant Pathol 155, 1277–1286 (2019). https://doi.org/10.1007/s10658-019-01855-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01855-3

Keywords

Navigation