Skip to main content
Log in

Use of thermal imaging and Fourier transform infrared spectroscopy for the pre-symptomatic detection of cucumber downy mildew

  • Original Article
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Most cultivars of cucumber are susceptible to Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew. This study aimed to evaluate the potential of two methods for the pre-symptomatic detection of downy mildew in cucumber. First, we observed the infection process of downy mildew using digital infrared thermography, as measured by the maximum temperature difference (MTD) and spot temperature of symptomatic areas. Under controlled conditions, visible symptoms were observed 5.36 ± 0.10 days after infection with P. cubensis, while thermal differences were detected 4.42 ± 0.16 days after infection. The MTD values of infected leaves were higher compared to those of non-infected leaves, but the MTD decreased sharply before the symptoms of downy mildew became visible. Significant differences in the spot temperatures of the symptomatic areas were apparent between the infected and healthy leaves from 4 days after infection. Second, we observed a changes in the Fourier transform infrared spectroscopy (FTIR) spectra of infected leaves and three characteristic wavenumbers—2977 cm−1, 1544 cm−1, and 1050 cm−1—were selected for the pre-symptomatic detection of cucumber downy mildew. According to the peak areas at these wavenumbers, pre-symptomatic and symptomatic samples could be classified correctly. These results clearly demonstrate that both thermal infrared imaging and FTIR spectra allow for the discrimination of healthy and infected leaves before there are visible symptoms. The pre-symptomatic data may be useful for scheduling timely fungicide applications for early detection and subsequent control of this destructive disease of cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade, L. H. C., Freitas, P. G., Mantovani, B. G., Figueiredo, M. S., Lima, R. A., Lima, S. M., Rangel, M. A. S., & Mussury, R. M. (2008). Detection of soybean rust contamination in soy leaves by FTIR photoacoustic spectroscopy. European Physical Journal Special Topics, 153, 539–541.

    Google Scholar 

  • Annette, N., Gregor, H., & Rolf, R. (2010). Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra. Field Crops Research, 119, 78–84.

    Google Scholar 

  • Baranowski, P., Jedryczka, M., Mazurek, W., Babulaskowronska, D., Siedliska, A., & Kaczmarek, J. (2015). Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. PLoS One, 10, 1–19.

    Google Scholar 

  • Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E., & Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, 113, 2380–2388.

    Google Scholar 

  • Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245.

    Google Scholar 

  • Call, A. D., Criswell, A. D., Wehner, T. C., Klosinska, U., & Kozik, E. U. (2012). Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Science, 52, 577–592.

    CAS  Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96, 5952–5959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai, A. L., Li, J. P., Shi, Y. X., Xie, X. W., & Li, B. J. (2010). Identification of fungal strain by Fourier transform infrared spectroscopy and cluster analysis. Spectroscopy and Spectral Analysis, 30, 2941–2944.

    CAS  PubMed  Google Scholar 

  • Depciuch, J., Kasprzyk, I., Roga, E., & Parlinskawojtan, M. (2016). Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy. Environmental Science Pollution Research, 23, 23203–23214.

    CAS  PubMed  Google Scholar 

  • Erukhimovitch, V., Tsror, L., Hazanovsky, M., Talyshinsky, M., Souprun, Y., & Huleihel, M. (2007). Early and rapid detection of Potato's fungal infection by fourier transform infrared microscopy. Applied Spectroscopy, 61, 1052–1056.

    CAS  PubMed  Google Scholar 

  • FAOATAT (2016) Food and Agriculture Organization of United Nations. http://faostat3.fao.org.

  • Fuchs, M. (1990). Infrared measurement of canopy temperature and detection of plant water stress. Theoretical and Applied Climatology, 42, 253–261.

    Google Scholar 

  • Garip, S., Gozen, A. C., & Severcan, F. (2009). Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chemistry, 113, 1301–1307.

    CAS  Google Scholar 

  • Granum, E., Pérez-Bueno, M. L., Calderón, C. E., Ramos, C., Vicente, A. D., Cazorla, F. M., et al. (2015). Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging. European Journal of Plant Pathology, 142, 625–632.

    CAS  Google Scholar 

  • Kim, S. W., Ban, S. H., Chung, H., Cho, S., Chung, H. J., Choi, P. S., Yoo, O. J., & Liu, J. R. (2004). Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Reports, 23, 246–250.

    CAS  PubMed  Google Scholar 

  • Kim, J., Kweon, S. G., Park, J., Lee, H., & Kim, K. W. (2016). Digital infrared thermal imaging of crape myrtle leaves infested with sooty mold. Plant Pathology Journal, 32, 563–569.

    PubMed  Google Scholar 

  • Kimber, J. A., & Kazarian, S. G. (2017). Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers. Analytical and Bioanalytical Chemistry, 409, 5813–5820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlali, R., Karunakaran, C., Wang, L., Willick, I., Schmidt, M., Liu, X., Borondics, F., Forseille, L., Fobert, P. R., Tanino, K., Peng, G., & Hallin, E. (2015). Synchrotron based phase contrast X-ray imaging combined with FTIR spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat. BMC Plant Biology, 15, 24–40.

    PubMed  PubMed Central  Google Scholar 

  • Lebeda, A., & Cohen, Y. (2011). Cucurbit downy mildew (Pseudoperonospora cubensis)—Biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology, 129, 157–192.

    Google Scholar 

  • Li, Z. Y., Liu, G., Li, L., Ou, Q. H., Zhao, X. X., Zhang, L., et al. (2012). FTIR spectroscopic study of broad bean diseased leaves. Agricultural Science and Technology, 13, 1217–1220.

    Google Scholar 

  • Lindenthal, M., Steiner, U., Dehne, H. W., & Oerke, E. C. (2005). Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology, 95, 233–240.

    PubMed  Google Scholar 

  • Maes, W. H., Minchin, P. E. H., Snelgar, W. P., & Steppe, K. (2014). Early detection of Psa infection in kiwifruit by means of infrared thermography at leaf and orchard scale. Functional Plant Biology, 41, 1207–1220.

    Google Scholar 

  • Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133, 197–209.

    CAS  Google Scholar 

  • Medeiros, C. R., Brioschi, M. L., Souza, S. N., & Teixeira, M. J. (2017). Infrared thermography to diagnose and manage venomous animal bites and stings. Revista Sociedade Brasileira Medicina Tropical, 50, 260–264.

    Google Scholar 

  • Meng, Q. J., Zhou, X. R., Pang, B. P., Sun, X. H., & Yan, F. (2014). Effects of downy mildew infestation on physiological and biochemical indexes in cucumber leaves. Acta Agriculturae Boreali-Occidentalis Sinica (in chinese), 23, 141–146.

    CAS  Google Scholar 

  • Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., & Ramon, H. (2004). Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44, 173–188.

    Google Scholar 

  • Naumann, A., Heine, G., & Rauber, R. (2010). Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra. Field Crops Research, 119, 78–84.

    Google Scholar 

  • Oerke, E. C., Steiner, U., Dehne, H. W., & Lindenthal, M. (2006). Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany, 57, 2121–2132.

    CAS  PubMed  Google Scholar 

  • Omran, E. S. E. (2016). Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Archives of Agronomy and Soil Science, 63, 883–896.

    Google Scholar 

  • Ord, J., Butler, H. J., Mcainsh, M. R., & Martin, F. L. (2016). Spectrochemical analysis of sycamore (Acer pseudoplatanus) leaves for environmental health monitoring. Analyst, 141, 2896–2903.

    CAS  PubMed  Google Scholar 

  • Palti, J., & Cohen, Y. (1980). Downy mildew of cucurbits (Pseudoperonospora Cubensis): The fungus and its hosts, distribution, epidemiology and control. Phytoparasitica, 8, 109–147.

    Google Scholar 

  • Rebuffo-Scheer, C. A., Schmitt, J., & Scherer, S. (2007). Differentiation of listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl Environmental Microbiology, 73, 1036–1040.

    CAS  Google Scholar 

  • Robison, F. M., Turner, M. F., Jahn, C. E., Schwartz, H. F., Prenni, J. E., Brick, M. A., & Heuberger, A. L. (2018). Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus Sclerotinia sclerotiorum. Plant, Cell and Environment. https://doi.org/10.1111/pce.13176.

  • Sandmann, M., Grosch, R., & Graefe, J. (2018). The use of features from fluorescence, thermography and NDVI imaging to detect biotic stress in lettuce. Plant Disease, 102, 1101–1107.

    PubMed  Google Scholar 

  • Smith, R. C. G., Heritage, A. D., Stapper, M., & Barrs, H. D. (1986). Effect of stripe rust (puccinia striiformis west.) and irrigation on the yield and foliage temperature of wheat. Field Crops Research, 14, 39–51.

    Google Scholar 

  • Stoll, M., Schultz, H. R., Baecker, G., & Berkelmann-Loehnertz, B. (2008). Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agriculture, 9, 407–417.

    Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. Annual Review of Phytopathology, 43, 83–116.

    CAS  PubMed  Google Scholar 

  • Sun, G., Nakayama, Y., Dagdanpurev, S., Abe, S., Nishimura, H., Kirimoto, T., & Matsui, T. (2017). Remote sensing of multiple vital signs using a CMOS camera-equipped infrared thermography system and its clinical application in rapidly screening patients with suspected infectious diseases. International Journal of Infectious Diseases, 55, 113–117.

    PubMed  Google Scholar 

  • Thanh, T. L., Thumanu, K., Wongkaew, S., Boonkerd, N., Teaumroong, N., Phansak, P., et al. (2017). Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. Journal of Plant Interactions, 12, 108–120.

    CAS  Google Scholar 

  • Thumanu, K., Sompong, M., Phansak, P., Nontapot, K., & Buensanteai, N. (2015). Use of infrared microspectroscopy to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007. Journal of Plant Interactions, 10, 270–279.

    CAS  Google Scholar 

  • Wang, J., Zhu, J., Huang, R., & Yang, Y. (2012). Investigation of cell wall composition related to stem lodging resistance in wheat (Triticum aestivum L.) by FTIR spectroscopy. Plant Signaling and Behavior, 7, 856–863.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Zhang, J., Sun, Y., Feng, J., & Zhang, X. (2017). Evaluating the potential value of natural product cuminic acid against plant pathogenic fungi in cucumber. Molecules, 22, 1914–1924.

    PubMed Central  Google Scholar 

  • Xie, C., Shao, Y., Li, X., & He, Y. (2015). Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Scientific Reports, 5, 16564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Z., He, D., & Lei, Y. (2018). Early nondestructive detection of wheat stripe rust using infrared thermal imaging. Spectroscopy and Spectral Analysis, 38, 3303–3309.

    CAS  Google Scholar 

  • Zhang, K., Wang, X., Zhu, W., Qin, X., Xu, J., Cheng, C., Lou, Q., Li, J., & Chen, J. (2018). Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theoretical and Applied Genetics, 131, 2229–2243. https://doi.org/10.1007/s00122-018-3150-2.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. R., Yu, K. Q., Li, X., & He, Y. (2016). Detection of fungus infection on petals of rapeseed (Brassica napus L.) using NIR hyperspectral imaging. Scientific Reports, 6, 38878.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, X., Spivey, N. W., Zeng, W., Liu, P. P., Fu, Z. Q., Klessig, D. F., He, S. Y., & Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host and Microbe, 11, 587–596.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (31401683), Beijing Municipal Excellent Talents Project (2016000057592G260), and the Postdoctoral Science Foundation of Beijing Academy of Agriculture and Forestry Sciences (968).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Xin-Ting Yang.

Ethics declarations

The authors declare that the manuscript complies with the ethical standards of the journal.

Conflict of interest

The authors declare that there are no potential conflicts of interest.

Human participants and animal studies

Our research does not involve Human Participants and/or Animals.

Informed consent

Informed consent was obtained from all authors of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, DM., Chen, MX., Zhao, L. et al. Use of thermal imaging and Fourier transform infrared spectroscopy for the pre-symptomatic detection of cucumber downy mildew. Eur J Plant Pathol 155, 405–416 (2019). https://doi.org/10.1007/s10658-019-01775-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01775-2

Keywords

Navigation