Skip to main content
Log in

Soil solarization and amelioration with calcium chloride or Bacillus licheniformis - an effective integrated strategy for the management of bacterial wilt of ginger incited by Ralstonia pseudosolanacearum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial wilt (BW) incited by Ralstonia pseudosolanacearum (Rps), is one among the most economically important and devastating disease prevalent in all the ginger growing countries. Several strategies encompassing cultural, physical and chemical means have been reported to manage bacterial wilt but with limited success. In the present study, a technology integrating physical (soil solarization), chemical (soil amelioration with calcium chloride) and biological (ginger apoplastic bacterium - Bacillus licheniformis) methods has been developed to manage BW efficiently, economically and eco-friendly. The results indicated that, CaCl2 (2 to 4%) is inhibitory to R. pseudosolanacearum under in vitro conditions. In planta evaluation under challenge inoculation showed 71%, 98% and 100% reduction in BW with B. licheniformis, 3% and 4% CaCl2, respectively. Subsequent field evaluation involving soil solarization followed by soil amelioration with CaCl2 or with B. licheniformis resulted in significant reduction in the population of R. pseudosolanacearum from 108 to 103. Further field evaluation in farmer’s plot in BW endemic regions also resulted in 100% disease suppression adopting the technology. The results emanated from the present study indicated that the technology developed which includes soil solarization along with soil amelioration with either CaCl2 3% or B. licheniformis would serve as a viable and effective integrated strategy for the management of BW in ginger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aravind, R., Kumar, A., & Eapen, S. J. (2012). Pre-plant bacterization: A strategy for delivery of beneficial endophytic bacteria and production of disease-free plantlets of black pepper (Piper nigrum L.). Archives of Phytopathology and Plant Protection, 45(9), 1115–1126.

    Article  Google Scholar 

  • Baptista, M. J., Lopes, C. A., de Souza, R. B., & Furumoto, O. (2006). Effect of soil solarization and biofumigation during autumn on BW incidence and potato yield. Horticultura Brasileira, 24, 99–102.

    Article  Google Scholar 

  • Baptista, M. J., de Souza, R. B., Pereira, W., Lopes, C. A., & Carrijo, O. A. (2007). Effect of soil solarization and biofumigation on tomato BW incidence. Horticultura Brasileira, 24, 161–165.

    Article  Google Scholar 

  • Bateman, D. F., & Lumsden, R. D. (1965). Relation of calcium content and nature of pectic substances in bean hypocotyls of different ages to susceptibility to an isolate of Rhizoctonia solani. Phytopathology, 55, 734–738.

  • Benson, J. H., Geary, B., Miller, J. S., Jolley, V. D., Hopkins, B. G., & Stevens, M. R. (2009). Phytophthora erythroseptica (pink rot) development in russet Norkotah potato grown in buffered hydroponic solutions I. Calcium nutrition effects. American Journal of Potato Research, 86(6), 466–471.

    Article  Google Scholar 

  • Bhai, R. S., Anandaraj, M., & Srinivasan, V. (2009). Validation of farmer’s practice of using sodium chloride for containing foot rot disease of black pepper (Piper nigrum L.). Indian Journal of Agricultural Sciences, 79(9), 57–61.

    Google Scholar 

  • Biggs, A. R. (1999). Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp. Plant Disease, 83, 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  • Biggs, A. R., Ingle, M., & Solihati, W. D. (1993). Control of Alternaria infection of fruit of apple cultivar Nittany with calcium chloride and fungicides. Plant Disease, 77, 976–980.

    Article  CAS  Google Scholar 

  • Casida, L., Klein, D., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376.

  • Ciampi-Panno Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S., & Conteras, A. (1989). Biological control of BW of potatoes caused by Pseudomonas solanacearum. American Potato Journal, 66, 315–332.

    Article  Google Scholar 

  • Conway, W. S., Sams, C. E., McGuire, R. G., & Kelman, A. (1992). Calcium treatment of apples and potatoes to reduce postharvest decay. Plant Disease, 76(4), 329–334.

    Article  CAS  Google Scholar 

  • Conway, W. S., Gross, K. C., Boyer, C. D., & Sams, C. E. (1988). Inhibition of Penicillium expansumpolygalacturonase activity by increased applecell wall calcium. Phytopathology, 78(8), 1052–1055.

    Article  CAS  Google Scholar 

  • Dannon, E. A., & Wydra, K. (2004). Interaction between silicon amendment, BW development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiological and Molecular Plant Pathology, 64, 233–243.

    Article  CAS  Google Scholar 

  • de P Araujo, J. S., Rodrigues, R., de L. D. Ribeiro, R., Gonsalves, K. S., Polidoro, J. C., (2004). Bacteriocin production by Brazilian isolates of Ralstonia solanacearum in vitro. ISHS. Acta Horticulturae International Symposium on Tomato Diseases. Brazil. http://www.actahort.org/members

  • Denny, T. P. (2000). Ralstonia solanacearum—A plant pathogen in touch with its host. Trends in Microbiology, 8(11), 486–489.

    Article  CAS  PubMed  Google Scholar 

  • Dinesh, S., Yadav, D. K., Sinha, S., & Singh, H. (2012). Effect of safe chemicals and bleaching powder on BW incidence in tomato caused by Ralstonia solanacearum race 1 bv. 3. Annals of Plant Protection Sciences, 20(2), 426–429.

    Google Scholar 

  • Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research, 173, 34–43.

    Article  PubMed  Google Scholar 

  • Dittapongpitch, V., & Surat, S. (2003). Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. Journal of Phytopathology, 151(4), 239–246.

    Article  CAS  Google Scholar 

  • Elphinstone, J. G. (2005). The current BW situation: A global overview. In C. Allen, P. Prior, & A. C. Hayward (Eds.), BW disease and the Ralstonia solanacearum species complex (pp. 9–28). St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Forster, R. L., & Echandi, E. (1975). Influence of calcium nutrition on bacterial canker of resistant and susceptible Lycopersicon spp. Phytopathology, 65, 84–85.

    Article  CAS  Google Scholar 

  • Fortnum, B. A., Martin, S. B., (1998). Disease Management Strategies for Control of BW of Tobacco in the South-eastern USA P. Prior et al. (eds.), BW Disease© Springer-Verlag Berlin Heidelberg.

  • Genin, S., & Boucher, C. (2002). Ralstonia solanacearum: Secrets of a major pathogen unveiled by analysis of its genome. Molecular Plant Pathology, 3(3), 111–118.

    Article  PubMed  Google Scholar 

  • Ginger Extension Pamphlet (2015) (Eds. Rajeev P and Ljio ) ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673 012.

  • Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstonia solanacearum may be involved in long term survival and plant infection. Applied and Environmental Microbiology, 67(9), 3866–3872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacisalihoglu, G., Ji, P. S., Longo, L. M., Olson, S., & Momol, T. M. (2007). BW induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on BW in tomato. Crop Protection, 26, 978–982.

    Article  CAS  Google Scholar 

  • Hayward, A. C., (1994). “The hosts of Pseudomonas solanacearum,” in BW: The Disease and its Causative Agent, Pseudomonas solanacearum eds Hayward A. C., Hartman G. L., editors. (Wallingford: CAB International pp. 9–24.

  • Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell Online, 17(8), 2142–2155.

    Article  CAS  Google Scholar 

  • Heyman, F., Lindahl, B., Persson, L., Wikström, M., & Stenlid, J. (2007). Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biology and Biochemistry, 39(9), 2222–2229.

    Article  CAS  Google Scholar 

  • Hong, J. C., Momol, M. T., Ji, P., & Jones, J. (2011). Management of BW in tomatoes with thymol and acibenzolar-S-methyl. Crop Protection, 30(10), 1340–1345.

    Article  CAS  Google Scholar 

  • Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M., & Jones, J. B. (2005). Evaluation of thymol as biofumigant for control of BW of tomato under field conditions. Plant Disease, 89, 497–500.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J. F., Li, J. G., & Dong, Y. H. (2013). Effect of calcium nutrition on resistance of tomato against BW induced by Ralstonia solanacearum. European Journal of Plant Pathology, 136, 547–555.

    Article  CAS  Google Scholar 

  • Kai, H., Yang, S.-Y., Li, H., Wang, H., & Li, Z.-L. (2014). Effects of calcium carbonate on the survival of Ralstonia solanacearum in soil and control of tobacco BW. Journal of Plant Pathology, 140, 665–675.

    Article  CAS  Google Scholar 

  • Kelman, A. (1954). The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology, 44(12), 693–695.

    Google Scholar 

  • Kifelew, H., Kassa, B., Sadessa, K., & Hunduma, T. (2015). Prevalence of bacterial wilt of Ginger (Zingiber Officinale) caused by Ralstonia solanacearum (Smith) in Ethiopia. International Journal of Research Studies in Agricultural Sciences, 1(6), 14–22.

    Google Scholar 

  • Kongkiattikajorn, J., Thepa, S., (2007). Increased tomato yields by heat treatment for controlling Ralstonia solanacearum, in soil. Proc. of the 45th Kasetsart University Annual conference, Kasetsart, p. 450–457.

  • Lemaga, B., Kakuhenzine, R., Kassa, B., Ewell, P. T., & Priou, S. (2005). Integrated control of potato BW in eastern Africa: The experience of African highlands initiative. In C. Allen, P. Prior, & A. C. Hayward (Eds.), BW disease and the Ralstonia solanacearum species complex (pp. 145–158). St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Li, J. G., & Dong, Y. H. (2013). Effect of a rock dust amendment on disease severity of tomato BW. Antonie Van Leeuwenhoek, 103, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Shi, J., Feng, Y., Yang, X., Li, X., & Shen, Q. (2013). Tobacco BW can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49(4), 447–464.

    Article  Google Scholar 

  • Mathew, J., Abraham, K., Indrasenan, G., & Marykutty, S. (1979). A new record of bacterial wilt of ginger infected by Pseudomonas solanacearum E.F. Smith from India. Current Science, 48, 213–214.

    Google Scholar 

  • Messiha, N. A. S., van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: A new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118, 211–225.

    Article  Google Scholar 

  • Michel, V. V., & Mew, T. W. (1998). Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology, 88(4), 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Michel, V. V., Wang, J. F., Midmore, D. J., & Hartman, G. L. (1997). Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of BW of tomato and survival of soil-borne Pseudomonas solanacearum in Taiwan. Plant Pathology, 46(4), 600–610.

    Article  Google Scholar 

  • Nehal, S. E.-M., & Mokhtar, M. A.-K. (2009). Salts application for suppressing potato early blight disease. Journal of Plant Protection Research, 49(4), 353–361.

    Article  CAS  Google Scholar 

  • Prameela, T. P., (2016). Diversity and biocontrol potential of apoplastic microbes from ginger, studies on biovar specific diagnostics for Ralstonia solanacearum Yabuuchi (smith) infecting ginger (Zingiber officinale Rosc.) and evaluation of apoplastic microbes for biocontrol. Thesis- Mangalore University pp.

  • Prameela, T. P., Suseela Bhai, R., & Anandaraj, M. (2012) Isolation of Phages infecting Ralstonia solanacearum causing bacterial wilt in ginger (Zingiber officinale Rosc.). In Abstracts: National Symposium on Heading Towards Molecular Horizons in Plant Pathology:Host resistance, Pathogen Dynamics, Diagnostics and Management: Indian Phytopathological Society (South Zone) 16th to 17th November 2012 P.15

  • Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: Major antagonistic endophytic bacteria to suppress BW pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25, 4755.

    Google Scholar 

  • Raz, V., & Fluhr, R. (1992). Calcium requirement for ethylene-dependent responses. Plant Cell, 4, 1123–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64, 3087–3103.

    Article  CAS  PubMed  Google Scholar 

  • Sugar, D., Powers, K. A., & Hilton, R. J. (1991). Enhanced resistance to side rot in pears treated with calcium chloride during the growing season. Plant Disease, 75, 212–214.

    Article  Google Scholar 

  • Sugar, D., Benbow, D., Powers, K. A., & Basile, S. R. (2003). Effects of sequential calcium chloride, ziram, and yeast orchard sprays on postharvest decay of pear. Plant Disease, 87, 1260–1262.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, T., Watanabe, K., Yoshida, S., Aino, M., Matsuyama, M., Maekawa, K., et al. (2007). The effects of inorganic elements on the reduction of Phytophthora stem rot disease of soybean, the growth rate and zoospore release of Phytophthora sojae. Journal of Phytopathology, 155, 97–107.

    Article  CAS  Google Scholar 

  • Sugimoto, T., Watanabe, K., Yoshida, S., Aino, M., Irie, K., Matoh, T., et al. (2008). Select calcium compounds reduce the severity of Phytophthora stem rot of soybean. Plant Disease, 92, 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  • Toppe, B., & Thinggaard, K. (1998). Prevention of Phytophthora root rot in Gerbera by increasing copper ion concentration in the nutrient solution. European Journal of Plant Pathology, 104, 359–366.

    Article  CAS  Google Scholar 

  • Vasse, J., Frey, P., Trigalet, A., 1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-.

    Google Scholar 

  • Volpin, H., Elad, Y., (1991). Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology,–675.

  • Wagura, A. G., Kimenju, J. W., & Gichimu, B. M. (2011). Comparative antibacterial effects of raw extracts and essential oils of Ocimum gratissimum L. against Ralstonia solanacearum (smith). International Journal of Plant Pathology, 2, 144–152.

    Article  Google Scholar 

  • Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M., et al. (2007). Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology, 73, 6790–6801. https://doi.org/10.1128/AEM.00841-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, T., Kawasaki, T., Nagata, S., Fujiwara, A., Usami, S., & Fujie, M. (2007). New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology, 153, 2630–2639.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, H. (2001). Relation between resistance to BW and calcium nutrition in tomato seedlings. Japan Agricultural Research Quarterly, 35, 163–169.

    Article  CAS  Google Scholar 

  • Yamazaki, H., & Hoshina, T. (1995). Calcium nutrition affects resistance of tomato seedlings to BW. HortScience, 30(1), 91–93.

    Article  Google Scholar 

  • Yamazaki, H., Ishizuka, O., & Hoshina, T. (1996). Relationship between resistance to BW and nutrient uptake in tomato seedlings. Soil Science & Plant Nutrition, 42, 203–208.

    Article  CAS  Google Scholar 

  • Yamazaki, H., Kikuchi, S., Hoshina, T., & Kimura, T. (2000). Calcium uptake and resistance to BW of mutually grafted tomato seedlings, soil Sci. Plant Nutr, 46, 529–534.

    CAS  Google Scholar 

  • Yuliar Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for BW diseases caused by Ralstonia solanacearum., 30(1), 1–11.

Download references

Acknowledgments

The authors are grateful to The Director, ICAR-Indian Institute of Spices research, Kozhikode for facilitating the research, Indian Council of Agricultural Research, New Delhi for funding through Phytofura, the outreach programme and Mr. K. Jayarajan for statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suseela Bhai.

Ethics declarations

Ethical statement

This research article is not submitted elsewhere for publication and this manuscript complies to the Ethical Rules applicable for this journal.

Conflict of interest

None of the authors declare a conflict of interest, with all authors consenting to publication.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhai, R.S., Prameela, T.P., Vincy, K. et al. Soil solarization and amelioration with calcium chloride or Bacillus licheniformis - an effective integrated strategy for the management of bacterial wilt of ginger incited by Ralstonia pseudosolanacearum. Eur J Plant Pathol 154, 903–917 (2019). https://doi.org/10.1007/s10658-019-01709-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01709-y

Keywords

Navigation