Skip to main content
Log in

Presence of two species-level groups in Globisporangium splendens isolates in Japan

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Globisporangium splendens, formerly classified as Pythium splendens, is one of the most common pathogenic oomycetes on ornamental plants, but this species has not been widely characterized in terms of its intraspecific variations in molecular phylogeny and virulence. In this study, G. splendens isolates from seven Prefectures in Japan were characterized for their morphology, mating compatibility, and molecular phylogeny, based on the internal transcribed spacer sequences of ribosomal RNA gene and mitochondrial cytochrome oxidase 1 and 2 gene sequences. We also examined the virulence of isolates on Pelargonium and papaya, which are known to be host plants of G. splendens. All G. splendens isolates had similar morphology and optimal growth temperatures. Mating compatibility tests revealed that all G. splendens isolates from Okinawa and Kagoshima Pref. were antheridial isolates, whereas all isolates from the other locations were oogonial isolates. The virulence on Pelargonium and papaya differed significantly among the isolates. Phylogenetic analyses based on the sequences of the three genes showed that G. splendens isolates were separated into two phylogenetic groups. Our study indicated that molecular intraspecific variation in G. splendens is considered to be species-level variation, which widely distributed in Japan, and it had no correlation with morphology or virulence on host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abiko, K., Hagiwara, H., & Ishii, M. (1983). First report of web-blight, and leaf and stem rot of Peperomia spp. Annual Report of The Kansai Plant Protection, 25, 37.

    Article  Google Scholar 

  • Al-Sa’di, A. M., Drenth, A., Deadman, M. L., de Cock, A. W. A. M., & Aitken, E. A. B. (2007). Molecular characterization and pathogenicity of Pythium species associated with damping-off in greenhouse cucumber (Cucumis sativus) in Oman. Plant Pathology, 56(1), 140–149.

    Google Scholar 

  • Al-Sa’di, A. M., Deadman, M. L., Al-Said, F. A., Khan, I., Al-Azri, M., Drenth, A., & Aitken, E. A. B. (2008). First report of Pythium splendens associated with severe wilt of muskmelon (Cucumis melo) in Oman. Plant Disease, 92(2), 313.

    Article  PubMed  Google Scholar 

  • Belbahri, L., McLeod, A., Paul, B., Calmin, G., Moralejo, E., Spies, C. F. J., Botha, W. J., Clemente, A., Descals, E., Sánchez-Hernández, E., & Lefort, F. (2008). Intraspecific and within-isolate sequence variation in the ITS rRNA gene region of Pythium mercuriale sp. nov. (Pythiaceae). FEMS Microbiology Letters, 284(1), 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Chase, A. R., & Munnecke, D. E. (1978). Pythium root rot and stunting of Peperomia obtusifolia var. variegate. Plant Disease Report, 62, 314–315.

    Google Scholar 

  • Guo, L. Y., & Ko, W. H. (1994). Factors affecting oospore germination of heterothallic Pythium splendens. Mycologia, 86(6), 777–780.

    Article  Google Scholar 

  • Guo, L. Y., & Ko, W. H. (1996). Mating type change in Pythium splendens induced by selfing. Annals of the Phytopatholgical Society of Japan, 62(1), 1–3.

    Article  Google Scholar 

  • Ichikawa, K., Tojo, M., & Miyashita-Watauchi, K. (2005). First report of Luclia piceana root rot caused by Pythium HS-group. Bulletin of the Yamanashi Prefectural Agricultural Technology Center, 17, 9–13 (in Japanese with English summary).

    Google Scholar 

  • Kageyama, K., Nakashima, A., Kajihara, Y., Suga, H., & Nelson, E. B. (2005). Phylogenetic and morphological analyses of Pythium graminicola and related species. Journal of General Plant Pathology, 71(3), 174–182.

    Article  CAS  Google Scholar 

  • Kageyama, K., Senda, M., Asano, T., Suga, H., & Ishiguro, K. (2007). Intra-isolate heterogeneity of the ITS region of rDNA in Pythium helicoides. Mycological Research, 111(4), 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Kamekawa, A., & Miyagi, S. (2011). Papaya replant problem caused by Pythium sp. and its control. Plant Protection, 65, 113–116 (in Japanese).

    Google Scholar 

  • Kamekawa, A., Tojo, M., Ikeda, H., Miyagi, S., Miyamaru, N., Takushi, T., & Kawano, S. (2010). Association of Pythium splendens on growth reduction of monoculture papaya (Carica papaya) in Okinawa. Japanese Journal of Phytopathology, 76(3), 159 (abstract in Japanese).

    Google Scholar 

  • Kidney, B. A. (1979). Host range, virulence, and control of Pythium splendens Braun from Peperomia orba. Proceedings of the Florida State Horticultural Society, 92, 355–358.

    CAS  Google Scholar 

  • Kubota, M. (2000). Occurrence of root rot on Schefflera arboricola and smiles asparagus caused by Pythium splendens. Annual Report of the Kanto-Tosan Plant Protection Society, 47, 97–100 (in Japanese).

    Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lévesque, C. A., & de Cock, A. W. A. M. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108(12), 1363–1383.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F. N. (2000). Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. Mycologia, 92(4), 711–727.

    Article  CAS  Google Scholar 

  • Matsumoto, C., Kageyama, K., Suga, H., & Hyakumachi, M. (1999). Phylogenetic relationships of Pythium species based on ITS and 5.8S sequences of the ribosomal DNA. Mycoscience, 40(4), 321–331.

    Article  CAS  Google Scholar 

  • McLeod, A., Botha, W. J., Meitz, J. C., Spies, C. F., Tewoldemedhin, Y. T., & Mostert, L. (2009). Morphological and phylogenetic analyses of Pythium species in South Africa. Mycological Research, 113(9), 933–951.

    Article  PubMed  Google Scholar 

  • Miller, P. M. (1955). V-8 juice agar as a general purpose medium for fungi and bacteria. Phytopathology, 45, 461–462.

    Google Scholar 

  • Miller, H. N., & Sauve, R. J. (1975). Etiology and control of Pythium stem rot of geranium. Plant Disease Report, 59, 122–126.

    CAS  Google Scholar 

  • Morita, Y., & Tojo, M. (2007). Modifications of PARP medium using fluazinam, miconazole and nystatin for detection of Pythium spp. in soil. Plant Disease, 91, 1591–1599.

    Article  CAS  PubMed  Google Scholar 

  • Nechwatal, J., & Lebecka, R. (2014). Genetic and phenotypic analyses of Pythium isolates from reed suggest the occurrence of a new species, P. phragmiticola, and its involvement in the generation of a natural hybrid. Mycoscience, 55, 134–143.

    Article  Google Scholar 

  • Nechwatal, J., & Mendgen, K. (2009). Evidence for the occurrence of natural hybridization in reed-associated Pythium species. Plant Pathology, 58, 261–270.

    Article  CAS  Google Scholar 

  • Perneel, M., Tambong, J. T., Adiobo, A., Floren, C., Lévesque, A., & Höfte, M. (2006). Intraspecific variability of Pythium myriotylum isolated from cocoyam and other host crops. Mycological Research, 110(5), 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Ploetz, R. C. (2004). Influence of temperature on Pythium splendens –induced root disease on carambola, Averrhoa carambola. Mycopathologia, 157(2), 225–231.

    Article  PubMed  Google Scholar 

  • Robideau, G. P., De Cock, A. W. A. M., Coffey, M. D., Voglmayr, H., Brouwer, H., Bala, K., Chitty, D. W., Desaulniers, N., Eggertson, Q. A., Gachon, C. M. M., Hu, C. H., Kupper, F. C., Rintoul, T. L., Sarhan, E., Verstappen, E. C. P., Zhang, Y., Bonants, P. J. M., Ristaino, J. B., & Lévesque, C. A. (2011). DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources, 11(6), 1002–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, K. L., Martin, F. N., de Cock, A. W. A. M., Lévesque, C. A., Spies, C. F. J., Okubara, P. A., & Paulitz, T. C. (2013). Molecular detection and quantification of Pythium species: Evolving taxonomy, new tools, and challenges. Plant Disease, 97(1), 4–20.

    Article  CAS  PubMed  Google Scholar 

  • Spies, C. F. J., Mazzola, M., Botha, W. J., Van Der Rijst, M., Mostert, L., & McLeod, A. (2011a). Oogonial biometry and phylogenetic analyses of the Pythium vexans species group from woody agricultural hosts in South Africa reveal distinct groups within this taxon. Fungal Biology, 115(2), 157–168.

    Article  PubMed  Google Scholar 

  • Spies, C. F. J., Mazzola, M., Botha, W. J., Langenhoven, S. D., Mostert, L., & McLeod, A. (2011b). Molecular analyses of Pythium irregulare isolates from grapevines in South Africa suggest a single variable species. Fungal Biology, 115(12), 1210–1224.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, J. (2007). Fungal diseases of horticultural and ornamental crops new to Japan found in Tokyo Metropolis. Bulletin of Tokyo Metropolitan Agriculture and Forestry Research Center, 2, 1–106 (in Japanese).

    Google Scholar 

  • Takeuchi, J., Horie, H., & Nishimura, S. (2001). First report of Pythium root-rot of Christmas-bells (Sandersonia aurantiaca hook.) caused by two species of Pythium in Japan. Annual Report of the Kanto-Tosan Plant Protection Society, 48, 65–67 (in Japanese).

    Google Scholar 

  • Tojo, M., Fujita, Y., Awad, H. M., & Ichitani, T. (1993). Preparation of Pythium inocula using bentgrass seeds for glasshouse studies. Annual Report of the Kansai Plant Protection Society, 35, 1–5.

    Article  Google Scholar 

  • Tojo, M., Kuroda, K., & Suzuki, H. (2004). First report of stem rot of guiana chestnut (Pachira aquatica) caused by Pythium splendens. Plant Disease, 88(1), 84.

    Article  CAS  PubMed  Google Scholar 

  • Tojo, M., Ichikawa, K., Uzuhashi, S., Kamekawa, A., & Ikeda, H. (2010). Root rot of Luculia pinceana caused by Pythium splendens. Japanese Journal of Phytopathology, 76(3), 199 (abstract in Japanese).

    Google Scholar 

  • Tojo, M., Van West, P., Hoshino, T., Kida, K., Fujii, H., Hakoda, H., Kawaguchi, Y., Mühlhauser, H. A., Van den Berg, A. H., Küpper, F. C., Herrero, M. L., Klemsdal, S. S., Tronsmo, A. M., & Kanda, H. (2012). Pythium polare, a new heterothallic oomycete causing brown discoloration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biology, 116(7), 756–768.

    Article  PubMed  Google Scholar 

  • Uematsu, S., Namekata, T., Hayashi, K., Zenbayashi, R., & Akayama, K. (1991). Pythium blackleg of geranium caused by Pythium aphanidermatum and P. splendens. Proceedings of the Kanto-Tosan Plant Protection Society, 38, 111–112 (in Japanese with English summary).

    Google Scholar 

  • Uzuhashi, S., Tojo, M., Kobayashi, S., & Kakishima, M. (2009). Pythium apinafurcum sp. nov.: Its morphology, molecular phylogeny, and infectivity for plants. Mycoscience, 50(4), 281–290.

    Article  CAS  Google Scholar 

  • Uzuhashi, S., Tojo, M., & Kakishima, M. (2010). Phylogeny of the genus Pythium and description of new genera. Mycoscience, 51(5), 337–365.

    Article  Google Scholar 

  • Uzuhashi, S., Hata, K., Matsuura, S., & Tojo, M. (2017). Globisporangium oryzicola sp. nov., causing poor seedling establishment of directly seeded rice. Antonie Van Leeuwenhoek, 110(4), 543–552.

    Article  CAS  PubMed  Google Scholar 

  • van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium. Studies in Mycology, 21, 1–242.

    Google Scholar 

  • Watanabe, T. (1989). Kinds, distribution, and pathogenicity of Pythium species isolated from soils of Kyushu Island in Japan. Japanese Journal of Phytopathology, 55(1), 32–40.

    Article  Google Scholar 

  • Watanabe, T. (2010). Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species (3rd ed.). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Watanabe, T., Onogi, S., Uematsu, S., & Tsuchiya, I. (1983). First report of root rot and wilt of melon caused by Pythium splendens. Japanese Journal of Phytopathology, 49(1), 127 (in Japanese).

    Google Scholar 

  • Waterhouse, G. M. (1968). The genus Pythium Pringsheim. Mycological paper 110. Commonwwalth mycological institute, Association of Applied Biologist, (pp 71). Kew, Surrey, England.

Download references

Acknowledgements

We would like to extend our sincerest thanks to Dr. Hirofumi Suzuki for providing Globisporangium splendens isolates and critical comments on the manuscript. This work was partially supported from the JSPS grant-in-aid for scientific research (No. 15 K00626) on MT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihomi Uzuhashi.

Ethics declarations

Grants

This research is supported by grants from the JSPS grant-in-aid for scientific research (No. 15 K00626).

Conflict of interest

None of the authors has any conflicts of interest or any financial ties to disclose.

Ethical standards

This research is not involved Human Participants and/or Animals.

Electronic supplementary material

Fig. S1

Colony patterns of Globisporangium splendens isolate OPU590 on CMA (a), PDA (b), PCA (c) and V8A (d). (PPTX 233 kb)

Fig. S2

Growth temperature response of Globisporangium splendens isolates from Japan on PCA. (PPTX 23 kb)

Fig. S3

Phylogenetic relationships of Globisporangium splendens and taxonomically related species inferred from the ITS. A phylogenetic tree constructed using the neighbor-joining method. The numbers at the branch points indicate the percentages of bootstrap values. (PPTX 23 kb)

Fig. S4

Brown color symptoms on Pelargonium leaves and leafstalks 3 days after inoculation at 30/25 °C (day/night, a–i) and 25/20 °C (day/night, j–r). Non-inoculated leaves and leafstalks (a and j), after inoculation of Globisporangium splendens isolate OPU589 (b and k), OPU591 (c and l), C20 (d and m), PS1 (e and n), PS2 (f and o), PS3 (g and p), PS4 (h and q) and PS5 (i and r). (PPTX 283 kb)

Fig. S5

Damping-off symptoms on papaya seedlings 9 days after inoculation at 30/25 °C (day/night, a–i) and 25/20 °C (day/night, j–r). Non-inoculated seedlings (a and j), after inoculation of Globisporangium splendens isolate OPU589 (b and k), OPU591 (c and l), C20 (d and m), PS1 (e and n), PS2 (f and o), PS3 (g and p), PS4 (h and q) and PS5 (i and r). (PPTX 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzuhashi, S., Ikeda, H., Kamekawa, A. et al. Presence of two species-level groups in Globisporangium splendens isolates in Japan. Eur J Plant Pathol 154, 751–766 (2019). https://doi.org/10.1007/s10658-019-01699-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01699-x

Keywords

Navigation