Skip to main content
Log in

Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation of Pyrenophora graminea, the causative agent of barley leaf stripe

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Barley leaf stripe, caused by the fungal pathogen Pyrenophora graminea, is becoming a destructive disease in the Hexi corridor of the Gansu province (China). Knowledge of the genetic diversity, population structure, and specific pathogenicity of P. graminea is essential for barley resistance breeding and efficient control of leaf stripe. In this study, whole-genome sequences of P. graminea were applied to identify microsatellites and develop simple sequence repeat (SSR) markers. These SSR markers were used to examine the genetic diversity and population structure of barley leaf stripe fungus in China. A total of 403 SSR primers were designed and synthesized, and target fragments were amplified by 390 microsatellite markers. These fragments corresponded to 789 alleles (1–5 alleles per locus) in eight strains (average, 2.02 alleles per marker locus). The cluster analysis and population structure were analyzed by means of 100 markers, and a total of 696 alleles were detected from 44 accessions (mean, 6.96 alleles per marker; range, 3–17). The average gene diversity was 0.63, and ranged from 0.11 to 0.92. The polymorphism information content (PIC) ranged from 0.11 to 0.91 with an average of 0.59. The Shannon’s Information Index ranged from 0.29 (for Pgm254 and Pgm337) to 2.64 (for Pgm371), with an average of 1.36. Results of cluster analysis showed that 44 accessions were divided into four clusters. Overall, 44 strains were divided into three subpopulations, comprising 19, 17, and eight strains each. Six isolates were tested for pathogenicity differentiation on 10 barley cultivars. Cultivar Ganpi2 was found to be resistant to all six isolates; nine of 10 cultivars had varied reactions to six isolates. Genome sequencing of P. graminea enabled SSR marker development, and SSR markers are applicable to studies of population genetic structure in P. graminea. We conclude that pathogenicity differentiation exists among the six isolates in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SSR:

Simple sequence repeat

STRs:

Short tandem repeats

ISSRs:

Intersimple sequence repeats

PDA:

Potato dextrose agar

P. graminea :

Pyrenophora graminea

References

  • Albertin, W., Panfili, A., Miot-Sertier, C., Goulielmakis, A., Delcamp, A., Salin, F., Lonvaud-Funel, A., Curtin, C., & Masneuf-Pomarede, I. (2014). Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level. Food Microbiology, 42, 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Arabi, M., & Jawhar, M. (2007). Heterogeneity in Pyrenophora graminea as revealed by ITS-RFLP. Journal of Plant Pathology, 89(3), 391–395.

  • Bayraktar, H., & Akan, K. (2012). Genetic characterization of Pyrenophora graminea isolates and the reactions of some barley cultivars to leaf stripe disease under greenhouse conditions. Turkish Journal of Agriculture and Forestry, 36(3), 329–339.

    CAS  Google Scholar 

  • Bembelkacem, A., Boulif, M., Amri, A., & Ceccarelli, S. (2000). Variation in the pathogenicity of 20 Algerian isolates of Pyrenophora graminea Ito & Kur. on nine barley (Hordeum vulgare L.) varieties. Phytopathologia Mediterranea, 39(3), 389–395.

    Google Scholar 

  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busse, F., Bartkiewicz, A., Terefe-Ayana, D., Niepold, F., Schleusner, Y., Flath, K., Sommerfeldt-Impe, N., Lübeck, J., Strahwald, J., & Tacke, E. (2017). Genomic and transcriptomic resources for marker development in Synchytrium endobioticum, an elusive but severe potato pathogen. Phytopathology, 107(3), 322–328.

    Article  CAS  PubMed  Google Scholar 

  • Castoe, T. A., Poole, A. W., de Koning, A. J., Jones, K. L., Tomback, D. F., Oyler-McCance, S. J., Fike, J. A., Lance, S. L., Streicher, J. W., & Smith, E. N. (2012). Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One, 7(2), e30953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delogu, G., Porta-Puglia, A., Stanca, A. M., & Vannacci, G. (1995). Interaction between barley and Pyrenophora graminea: an overview of research in Italy. Rachis, 14(1/2), 29–34.

    Google Scholar 

  • Dutech, C., Enjalbert, J., Fournier, E., Delmotte, F., Barres, B., Carlier, J., Tharreau, D., & Giraud, T. (2007). Challenges of microsatellite isolation in fungi. Fungal Genetics and Biology, 44(10), 933–949.

    Article  CAS  PubMed  Google Scholar 

  • Dutech, C., Fabreguettes, O., Capdevielle, X., & Robin, C. (2010). Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France. Heredity, 105(2), 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, A. L., Civitello, A., Hammond, H. A., & Caskey, C. T. (1991). DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. American Journal of Human Genetics, 49(4), 746–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellwood, S. R., Liu, Z., Syme, R. A., Lai, Z., Hane, J. K., Keiper, F., Moffat, C. S., Oliver, R. P., & Friesen, T. L. (2010). A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biology, 11(11), R109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Gagnon, M. C., Feau, N., Dale, A. L., Dhillon, B., Hamelin, R., Brasier, C., Grünwald, N. J., Brière, S. C., & Bilodeau, G. (2016). Development and validation of polymorphic microsatellite loci for the NA2 lineage of Phytophthora ramorum from whole genome sequence data. Plant Disease, 101(5), 666–673.

    Article  Google Scholar 

  • Gatti, A., Rizza, F., Delogu, G., Terzi, V., Porta-Puglia, A., & Vannacci, G. (1992). Physiological and biochemical variability in a population of Drechslera graminea. Journal of Genetics and Breeding, 46, 179–186.

    CAS  Google Scholar 

  • Leyva-Madrigal, K. Y., Larralde-Corona, C. P., Calderón-Vázquez, C. L., & Maldonado-Mendoza, I. E. (2014). Genome distribution and validation of novel microsatellite markers of Fusarium verticillioides and their transferability to other Fusarium species. Journal of Microbiological Methods, 101, 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Li, R., Li, Y., Kristiansen, K., & Wang, J. (2008). SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5), 713–714.

    Article  CAS  PubMed  Google Scholar 

  • Li, R., Zhu, H., & Ruan, J. (2012). De novo assembly of human genomes with massively parallel short. Genome Research, 22, 557–567.

    Article  CAS  Google Scholar 

  • Li, W., Feng, Y., Sun, H., Deng, Y., Yu, H., & Chen, H. (2014). Analysis of simple sequence repeats in the Gaeumannomyces graminis var. tritici genome and the development of microsatellite markers. Current Genetics, 60(4), 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Litt, M., & Luty, J. A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 44(3), 397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathre, D. E. (1997). Compendium of barley diseases. St. Paul: The American Phytopathological Society Press.

    Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40(1), 349–379.

    Article  CAS  PubMed  Google Scholar 

  • Michelmore, R. W., & Hulbert, S. H. (1987). Molecular markers for genetic analysis of phytopathogenic fungi. Annual Review of Phytopathology, 25(1), 383–404.

    Article  CAS  Google Scholar 

  • Moges, A. D., Admassu, B., Belew, D., Yesuf, M., Njuguna, J., Kyalo, M., & Ghimire, S. R. (2016). Development of microsatellite markers and analysis of genetic diversity and population structure of Colletotrichum gloeosporioides from Ethiopia. PLoS One, 11(3), e151257.

    Article  CAS  Google Scholar 

  • Mueller, K. J., Valè, G., & Enneking, D. (2003). Selection of resistant spring barley accessions after natural infection with leaf stripe (Pyrenophora graminea) under organic farming conditions in Germany and by sandwich test. Journal of Plant Pathology, 85(1), 9–14.

  • Pandey, G., Misra, G., Kumari, K., Gupta, S., Parida, S. K., Chattopadhyay, D., & Prasad, M. (2013). Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Research, 20(2), 197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlícek, A., Hrdá, S., & Flegr, J. (1999). Free tree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biologica, 45(3), 97–99.

    PubMed  Google Scholar 

  • Pecchioni, N., Faccioli, P., Toubia-Rahme, H., Valè, G., & Terzi, V. (1996). Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 93(1–2), 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Pecchioni, N., Vale, G., Toubia-Rahme, H., Faccioli, P., Terzi, V., Delogu, G., & Fischbeck, G. (2010). Barley—Pyrenophora graminea interaction: QTL analysis and gene mapping. Plant Breeding, 118(1), 29–35.

    Article  Google Scholar 

  • Piotrowska, M. J., Ennos, R. A., Fountaine, J. M., Burnett, F. J., Kaczmarek, M., & Hoebe, P. N. (2016). Development and use of microsatellite markers to study diversity, reproduction and population genetic structure of the cereal pathogen Ramularia collo-cygni. Fungal Genetics and Biology, 87, 64–71.

    Article  CAS  PubMed  Google Scholar 

  • Platenkamp, R. (1976). Investigation on the infection pathway of Drechslera graminea in germinating barley. Kongelige Veterinaer-og Landbohoeiskoles Aarsskrift.

  • Porta Puglia, A., Delogu, G., & Vannacci, G. (1986). Pyrenophora graminea on winter barley seed: effect on disease incidence and yield losses. Journal of Phytopathology, 117(1), 26–33.

    Article  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohif, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.1. Setauket: Exeter Software.

    Google Scholar 

  • Si, E. J., Yang, S. L., Li, B. C., Ma, X. L., Wang, S. R., & Wang, S. R. (2017). Pathogenic analysis,rDNA-ITS and genetic diversity of Pyrenophora garminea in Gansu Province. Journal of Plant Protection, 44(1), 84–92.

    CAS  Google Scholar 

  • Stefánsson, T. S. (2009). Barley pathogens in Iceland: Identification, virulence and genetic structure of major barley pathogens in Iceland. Master Thesis. Hvanneyri: Agricultural University of Iceland.

  • Tautz, D. (1989). Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekauz, A. (1983). Reaction of Canadian barley cultivars to Pyrenophora graminea, the incitant of leaf stripe. Canadian Journal of Plant Pathology, 5(4), 294–301.

    Article  Google Scholar 

  • Tharreau, D., Fudal, I., Andriantsimialona, D., Utami, D., Fournier, E., Lebrun, M., & Nottéghem, J. (2009). World population structure and migration of the rice blast fungus, Magnaporthe oryzae. In Advances in genetics, genomics and control of rice blast disease (pp. 209–215). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Vaghefi, N., Kikkert, J. R., Bolton, M. D., Hanson, L. E., Secor, G. A., & Pethybridge, S. J. (2017). De novo genome assembly of Cercospora beticola for microsatellite marker development and validation. Fungal Ecology, 26, 125–134.

    Article  Google Scholar 

  • Valè, G., Tacconi, G., Francia, E., Dall'Aglio, E., Govoni, C., Pecchioni, N., Arru, L., Delogu, G., Stanca, A. M., Haegi, A. (2004). Advances in understanding barley Pyrenophora graminea interactions. Paper presented at the 2nd International Workshop on Barley Leaf Blights, Aleppo (Syria), 7–11 April 2002.

  • Weiland, J. J., Steffenson, B. J., Cartwright, R. D., & Webster, R. K. (1999). Identification of molecular genetic markers in Pyrenophora teres f. teres associated with low virulence on'Harbin'barley. Phytopathology, 89(2), 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M., Yu, J., Li, H., Wang, Y., Yin, X., Bo, H., Ding, H., Zhou, Y., & Liu, Y. (2016). Survey and analysis of simple sequence repeats in the Ustilaginoidea virens genome and the development of microsatellite markers. Gene, 585(1), 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Zein, I., Jawhar, M., & Arabi, M. I. E. (2010). Efficiency of IRAP and ITS-RFLP marker systems in accessing genetic variation of Pyrenophora graminea. Genetics and Molecular Biology, 33(2), 328–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Science and Technology Innovation Funds of Gansu Agricutural University-Special funds for discipline construction(GAU-XKJS-2018-082), Science and Technology Innovation Funds of Gansu Agricutural University-Special funds for discipline construction(GAU-XKJS-2018-083). Science and Technology Innovation Funds of Gansu Agricutural University-Scientific research start-up funds for openly-recuited doctors(GSAU-RCZX201706), Science and Technology Innovation Funds of Gansu Agricutural University-Sheng Tongsheng innovation funds (GSAU-STS-1735); (the National Natural Science Foundation of China (CN)(31171558; 31460347), China Agriculture Research System(CARS-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Table S1

Details of primer sequence, Motif, Tm and amplification length in P. graminea strain QWC. (DOCX 36 kb)

Table S2

Genetic similarity coefficient analysis of 44 strains (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, E., Meng, Y., Ma, X. et al. Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation of Pyrenophora graminea, the causative agent of barley leaf stripe. Eur J Plant Pathol 154, 227–241 (2019). https://doi.org/10.1007/s10658-018-01651-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01651-5

Keywords

Navigation