European Journal of Plant Pathology

, Volume 151, Issue 1, pp 101–116 | Cite as

The effect of salicylic and jasmonic acids on tomato physiology and tolerance to Cucumber mosaic virus (CMV)

  • Sahar Gholi-TolouieEmail author
  • Nemat Sokhandan-Bashir
  • Mahdi Davari
  • Mohammad Sedghi


Cucumber mosaic virus (CMV) is one of the most important plant viruses responsible for sharp reductions in the production of many cultivated plants. Activities of antioxidant enzymes, photosynthetic capacity, proline and total soluble carbohydrates (TSC) content were measured in the leaves of tomato (Solanum lycopercicum cv. Falat) plants treated with phytohormones (salicylic and jasmonic acids and their combination) and inoculated with CMV at 0, 1, 2, 4, 6, 8, and 15 days after the treatments. Based on the results, catalase (CAT) activity decreased in the healthy and infected plants, but peroxidase (POD) activity increased in the CMV-infected plants signifying that POD is more active in H2O2 scavenging in tomato. Because the hormone treatments inhibited the reduction in the enzyme activity, it may be considered as a controlling method against CMV. Superoxide dismutase (SOD) activity was lower in the control until 6 days post inoculation (dpi), but increased after 8 dpi. The infected plants and the hormone-treated plants showed an increased SOD activity from 0 to 15 dpi. Phenylalanine ammonia lyase (PAL) activity also increased in all the treatments over the time period (0-15 dpi). Net photosynthesis (NP) rate and chlorophyll content decreased under the virus infection and hormone treatment, whereas control plants had the highest NP and chlorophyll content. Proline accumulation occurred in the infected and hormone- treated plants, but TSC content decreased in comparison to the control. Reduction of TSC content was not significant in the hormone and virus- treated plants. Expression of CMV coat protein gene (CMV-CP) was decreased by approximately 34% in SA+JA+CMV treatment in comparison to the CMV-infected plants. In conclusion, CMV had harmful effect on physiological traits of tomato plants, but hormone application induced resistance. This resistance may be accomplished through the combination of both hormone-related signaling pathways which likely established a strong resistance network together.


Cucumber mosaic virus (CMV) Tomato Local acquired resistance (LAR) Antioxidant Hypersensitive reaction Quantitative real-time PCR 


Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10658_2017_1356_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
10658_2017_1356_MOESM2_ESM.xlsx (13 kb)
ESM 2 (XLSX 13 kb)


  1. Abd El-Gawad, H. G., & Bondok, A. M. (2015). Response of tomato plants to salicylic acid and chitosan under infection with Tomato mosaic virus. American-Eurasian Journal of Agricultural and Environmental Sciences, 15(8), 1520–1529.Google Scholar
  2. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.CrossRefPubMedGoogle Scholar
  3. Aldesuquy, H., Baka, Z., & Alazab, N. (2015). Shikimic and Salicylic acids induced resistance in faba bean plants against Chocolate Spot Disease. Journal of Plant Pathology and Microbiology, 6, 257–265.Google Scholar
  4. Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12, 607–621.CrossRefPubMedGoogle Scholar
  5. Anzlovar, S., Kovac, M., & Ravnikar, M. (1996). Photosynthetic pigments in healthy and virus-infected potato plantlets (Solanum tuberosum L.) Grown in vitro. Phyton, 36(2), 221–230.Google Scholar
  6. Arnon, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Asghari, M., & Hasanlooe, A. R. (2015). Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content, catalase and peroxidase enzymes activity in “Serosa” strawberry fruit during storage. Scientia Horticulturae, 197, 490–495.CrossRefGoogle Scholar
  8. Assis, J. S., Maldonado, R., Muñoz, T., Escribano, M. I., & Merodio, C. (2001). Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening Cherimoya fruit. Postharvest Biology and Technology, 23, 33–39.CrossRefGoogle Scholar
  9. Bates, L. S., Waldern, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.CrossRefGoogle Scholar
  10. Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signaling. Journal of experimental Botany, 65, 1229–1240.CrossRefPubMedGoogle Scholar
  11. Boatwright, J. L., & Mukhtar, K. P. (2013). Salicylic acid: an old hormone up to new tricks. Molecular Plant Pathology, 14(6), 623–634.CrossRefPubMedGoogle Scholar
  12. Burkhanova, G. F., Yarullina, L. G., & Maksimov, I. V. (2007). The control of wheat defense responses during infection with Bipolaris sorokiniana by chitooligosaccharides. Russian Journal of Plant Physiology, 54(1), 104–110.CrossRefGoogle Scholar
  13. Çag, S., Cevahir-Öz, G., Sarsag, M., & Gören-Saglam, N. (2009). Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pakistan Journal of Botany, 41, 2297–2303.Google Scholar
  14. Champigny, M. J., Shearer, H., Mohammad, A., Haines, K., Neumann, M., Thilmony, R., He, S. Y., Fobert, P., Dengler, N., & Cameron, R. K. (2011). Localization of DIR1 at the tissue, cellular and subcellular levels during systemic acquired resistance in Arabidopsis using DIR1: GUS and DIR1: EGFP reporters. BMC Plant Biology, 11, 125–141.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chandra, A., & Bhatt, R. K. (1998). Biochemical physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35, 255–258.CrossRefGoogle Scholar
  16. Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceeding of Natural Academic Sciences of the United States of America, 102(9), 3459–3464.CrossRefGoogle Scholar
  17. Clarke, S. F., Guy, P. L., Burritt, D. J., & Jameson, P. E. (2002). Changes in activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiologia Plantarum, 114, 157–164.CrossRefPubMedGoogle Scholar
  18. Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H., Pastori, G., Wellburn, F., Baker, N., Wellburn, A., & Mullineaux, P. (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell, 11, 1277–1291.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species. Plant Signaling and Behavior, 3, 156–165.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achon, M. A., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11.CrossRefGoogle Scholar
  21. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 1–13.CrossRefGoogle Scholar
  22. Deng, X., Zhu, T., Peng, X., Xi, D., Guo, H., Yin, Y., Xang, D. W., & Lin, H. H. (2016). Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Scientific Reports, 6(1), 1–14.CrossRefGoogle Scholar
  23. Don, J., Wan, G., & Liang, Z. (2010). Accumulation of salycilic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99–104.CrossRefGoogle Scholar
  24. Duan, Z., Lv, G., Shen, C., Li, Q., Qin, Z., & Niu, J. (2014). The role of jasmonic acid signalling in wheat (Triticum aestivum L.) powdery mildew resistance reaction. European Journal of Plant Pathology, 140(1), 169–183.CrossRefGoogle Scholar
  25. Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.CrossRefPubMedGoogle Scholar
  26. Ellis, C., Karafyllidis, I., & Turner, J. G. (2002). Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions, 15, 1025–1030.CrossRefPubMedGoogle Scholar
  27. Enyedi, A.J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic-acid in tobacco during the hypersensitive reaction to tobacco mosaic-virus. Proceedings of the National Academy of Sciences of the United States of America, 89, 2480-2484. Google Scholar
  28. Fabro, G., Kovacs, I., Pavet, V., Szabados, L., & Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 343–350.CrossRefPubMedGoogle Scholar
  29. Falcioni, T., Ferrio, J. P., del Cueto, A. I., Giné, J., Achón, M. Á., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and tolerance to Potato virus X infection. European Journal of Plant Pathology, 138, 331–345.CrossRefGoogle Scholar
  30. Gal-On, A., Kaplan, I., Roossinck, M. J., & Palukaitis, P. (1994). The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA 1 in virus movement. Virology, 205(1), 280–289.CrossRefPubMedGoogle Scholar
  31. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase occurrence in higher plants. Plant Physiology, 59, 309–314.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gonda, T. J., & Symons, R. H. (1979). Cucumber mosaic virus replication in Cowpea protoplasts: time course of virus, coat protein and RNA synthesis. Journal of General Virology, 45, 723–736.CrossRefGoogle Scholar
  33. Hayat, S., & Ahmad, A. (2007). Salicylic acid: a plant hormone. The Netherlands: Springer.CrossRefGoogle Scholar
  34. Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3(4), 297–304.CrossRefGoogle Scholar
  35. Hemida, S. K. (2005). Effect of Bean yellow mosaic virus on physiological parameters of Vicia faba and Phaseolus vulgaris. International Journal of Agricultural Biology, 7, 154–157.Google Scholar
  36. Herlihy, E. A., Duffy, E. M., & Cassells, A. C. (2003). The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobotanica, 38, 201–207.CrossRefGoogle Scholar
  37. Hernandez, J. A., Gullner, G., Clemente-Morenoc, M. J., Künstlerb, A., Juhasz, C., Díaz-Vivancos, P., & Kiraly, L. (2015). Oxidative stress and antioxidative responses in plant-virus interactions. Physiological and Molecular Plant Pathology.
  38. Kar, M., & Mishra, D. (1976). Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiology, 578, 315–319.CrossRefGoogle Scholar
  39. Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65, 729–735.Google Scholar
  40. Khalil, R. R., Bassiouny, F. M., El-Dougdoug, K. A., Abo-Elmaty, S., & Yousef, M. S. (2014). A dramatic physiological and anatomical changes of tomato plants infecting with Tomato yellow leaf curl germinivirus. Journal of Agricultural Technology, 10(5), 1213–1229.Google Scholar
  41. Kiraly, L., Hafez, Y., Fodor, J., & Kiraly, Z. (2008). Suppression of Tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. The Journal of General Virology, 89, 799–808.CrossRefPubMedGoogle Scholar
  42. Kobeasy, M. I., El-Beltagi, H. S., El-Shazly, M. A., & Khattab, E. A. H. (2011). Induction of resistance in Arachis hypogaea L. against Peanut mottle virus by nitric oxide and salicylic acid. Physiological and Molecular Plant Pathology, 76, 112–118.CrossRefGoogle Scholar
  43. Koornneef, A., & Pieterse, C. M. J. (2008). Cross talk in defense signaling. Plant Physiology, 146, 839–844.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F. C., Van Loon, L. C., & Pieterse, C. M. (2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiology, 147, 1358–1368.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee, S. C., Mustroph, A., Sasidharan, R., Vashisht, D., Pedersen, O., Oosumi, T., Voesenek, L. A. C. J., & BaileySerres, J. (2011). Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytologist, 190, 457–471.CrossRefPubMedGoogle Scholar
  46. Leon-Reyes, A., Spoel, S. H., De Lange, E. S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F. F., Welschen, R. A., Ritsema, T., & Pieterse, C. M. (2009). Ethylene modulates the role of nonexpressor of pathogenesisrelated genes in cross talk between salicylate and jasmonate signaling. Plant Physiology, 149, 1797–1809.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., & Ritsema, T. (2010). Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 23, 187–197.CrossRefPubMedGoogle Scholar
  48. Lewsey, M., Surette, M., Robertson, F. C., Ziebell, H., Choi, S. H., Ryu, K. H., Canto, T., Palukaitis, P., Payne, T., Walsh, J. A., & Carr, J. P. (2009). The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. Molecular Plant-Microbe Interactions, 22(6), 642–654.CrossRefPubMedGoogle Scholar
  49. Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H., Zhang, Y., & Liang, Y. (2017). SlMAPK3 enhances tolerance to Tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE, 12(2), e0172466. Scholar
  50. Liao, Y. W. K., Shi, K., Fu, L. J., Zhang, S., Li, X., Dong, D. K., Jiang, Y. P., Zhou, Y. H., Xia, X. J., Liang, W. S., & Yu, J. Q. (2012). The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta, 235, 225–238.CrossRefPubMedGoogle Scholar
  51. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.CrossRefPubMedGoogle Scholar
  52. Loake, G., & Grant, M. (2007). Salicylic acid in plant defense: the players and protagonists. Current Opinion in Plant Biology, 10, 466–472.CrossRefPubMedGoogle Scholar
  53. Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S., & Lin, H. (2011). Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathology Journal, 27(1), 53–58.CrossRefGoogle Scholar
  54. Montasser, M. S., Al-Own, F. D., Haneif, A. M., & Afzal, M. (2012). Effect of Tomato yellow leaf curl bigeminivirus (TYLCV) infection on tomato cell ultra-structure and physiology. Canadian Journal of Plant Pathology, 34, 114–125.CrossRefGoogle Scholar
  55. Murphy, A., & Carr, J. P. (2002). Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiology, 128, 552–563.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pacheco, A. C., Cabral, C., Fermino, E. S., & Aleman, C. C. (2013). Salicylic acid induced changes to growth, flowering and flavonoids production in marigold plants. Journal of Medicinal Plants Researches, 7(42), 3158–3163.Google Scholar
  57. Palukaitis, P., & Carr, J. P. (2008). Plant resistance responses to viruses. Journal of Plant Pathology, 90(2), 153–171.Google Scholar
  58. Pazarlar, S., Gümüş, M., & Öztekin, G. (2013). The effects of Tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum L.) Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(2), 427–433.CrossRefGoogle Scholar
  59. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.CrossRefPubMedGoogle Scholar
  60. Prohens, J., & Nuez, F. (2008). Vegetables I. Handbook of Plant Breeding (pp. 381-418). New York: Springer Co..Google Scholar
  61. Radwan, D. E., Fayez, K. A., Mahmoud, S. Y., Hamad, A., & Lu, G. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry, 45, 480–489.CrossRefPubMedGoogle Scholar
  62. Radwan, D. E. M., Lu, G., Fayez, K. A., & Mahmoud, S. Y. (2008). Protective action of salicylic acid against Bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology, 165, 845–857.CrossRefPubMedGoogle Scholar
  63. Rao, M. V., & Davis, R. D. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant Journal, 17, 603–614.CrossRefPubMedGoogle Scholar
  64. Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defense: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.CrossRefPubMedGoogle Scholar
  65. Robert-Seilaniantz, A., Grant, M., & Jones, J. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. The Annual Review of Phytopathology, 49, 317–343.CrossRefPubMedGoogle Scholar
  66. Ross, A. F. (1961). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology, 14, 329–339.CrossRefPubMedGoogle Scholar
  67. Sarkar, T. S., Majumdar, U., Roy, A., Maiti, D., Goswamy, A. M., Bhattacharjee, A., Ghosh, S. K., & Ghosh, S. (2010). Production of nitric oxide in host-virus interaction: A case study with a compatible begomovirus-kenaf host-pathosystem. Plant Signaling and Behavior, 5, 668–676.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Scott, T. A., & Melvin, E. H. (1956). Anthrone colorimetric method. In R. L. Whistler & M. L. Walfrom (Eds.), Methods in carbohydrate chemistry (Vol. 1, p. 384). New York: Academic Press.Google Scholar
  69. Sedghi, M., Seyed Sharifi, R., Pirzad, A. R., & Amanpour-Balaneji, B. (2012). Phytohormonal regulation of antioxidant systems in petals of drought stressed Pot Marigold (Calendula officinalis L.) Journal of Agricultural Science and Technology, 14, 869–878.Google Scholar
  70. Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2002). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.CrossRefGoogle Scholar
  71. Shang, J., Xi, D. H., Xu, F., Wang, S. D., Cao, S., Xu, M. Y., Zhao, P. P., Wang, J. H., Jia, S. D., Zhang, Z. W., Yuan, S., & Lin, H. H. (2011). A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta, 2, 299–308.CrossRefGoogle Scholar
  72. Siddique, Z., Akhtar, K. P., Hameed, A., Sarwar, N., Haq, I. U., & Khan, S. A. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by Cotton leaf curl Burewala virus. Journal of Plant Interactions, 9, 702–711.CrossRefGoogle Scholar
  73. Sinha, A., & Srivastava, M. (2010). Biochemical changes in mung bean plants infected by Mung bean yellow mosaic virus. International Journal of Virology, 6, 150–157.CrossRefGoogle Scholar
  74. Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., & Pieterse, C. M. (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell, 15, 760–770.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stevens, J., Senaratna, T., & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49, 77–83.Google Scholar
  76. Stewart, R. R. C., & Bewley, J. D. (1980). Lipid peroxidation associated aging of soybean axes. Plant Physiology, 65, 245–248.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sudhakar, N., Nagendra-Prasad, D., Mohan, N., & Murugesan, K. (2006). Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against Cucumber mosaic virus by using ozone. Journal of Virological Methods, 139(1), 71–77.CrossRefPubMedGoogle Scholar
  78. Tao, Y., Yu, Q., Zhou, Y., Shi, K., Zhou, J., Yu, J., & Xia, X. J. (2015). Application of 24-epibrassinolide decreases susceptibility to Cucumber mosaic virus in zucchini (Cucurbita pepo L.) Scientiae Horticulturae, 195, 116–123.CrossRefGoogle Scholar
  79. Van Wees, S.C.M., de Swart, E.A.M., Van Pelt, J.A., Van Loon, L.C., & Pieterse, C.M.J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate dependent defense pathways in Arabidopsis thaliana. Proceeding of Natural Academic Sciences. U.S.A. 97, 8711-8716. Google Scholar
  80. Vitti, A., La Monaca, E., Sofo, A., Scopa, A., Cuypers, A., & Nuzzaci, M. (2015). Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl, 60, 135–147.CrossRefGoogle Scholar
  81. Xue, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.CrossRefGoogle Scholar
  82. Yang, T., Meng, Y., Chen, L., Lin, H., & Xi, D. (2016). The roles of alpha-Momorcharin and jasmonic acid in modulating the response of Momordica charantia to cucumber mosaic virus. Frontiers in Micobiology, 7, 1–12.Google Scholar
  83. Zander, M., La Camera, S., Lamotte, O., Métraux, J. P., & Gatz, C. (2010). Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant Journal, 61, 200–210.CrossRefPubMedGoogle Scholar
  84. Zhu, F., Xi, D., Yuan, S., Xu,F., Zhang, D., & Lin, H. (2014). Salicylic acid and Jasmonic acid are essential for systemic resistance against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 27, 567-577. Google Scholar
  85. Zitikaitė, I., & Urbanavičienė, L. (2010). Detection of natural infection by Cucumber mosaic virus in vegetable crops. Biologija, 56(1–4), 14–19.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Sahar Gholi-Tolouie
    • 1
    Email author
  • Nemat Sokhandan-Bashir
    • 2
  • Mahdi Davari
    • 3
  • Mohammad Sedghi
    • 4
  1. 1.Department of Plant ProtectionUniversity of TabrizTabrizIran
  2. 2.Department of Plant Protection, Faculty of AgricultureUniversity of TabrizTabrizIran
  3. 3.Department of Plant Protection, Faculty of Agriculture and Natural ResourcesUniversity of Mohaghegh ArdabiliArdabiliIran
  4. 4.Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural ResourcesUniversity of Mohaghegh ArdabiliArdabiliIran

Personalised recommendations