Skip to main content
Log in

Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmaii

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhurst, R. J. (1980). Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology, 121, 303–309.

    Google Scholar 

  • Bock, C. H., Shapiro-Ilan, D. I., Wedge, D., & Cantrell, C. H. (2014). Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide. Journal of Pest Science, 87, 155–162.

    Article  Google Scholar 

  • Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biololgy, 13, 1–7.

    Article  Google Scholar 

  • Boemare, N. E., & Akhurst, R. J. (2006). The genera Photorhabdus and Xenorhabdus. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (pp. 451–494). New York: Springer Science + Business Media Inc..

    Chapter  Google Scholar 

  • Boszormenyi, E., Ersek, T., Fodor, A., Fodor, A. M., Foldes, L. S., Hevesi, M., Hogan, J. S., Katona, Z., Klein, M. G., Kormany, A., Pekar, S., Szentirmai, A., Sztaricskai, F., & Taylor, R. A. J. (2009). Isolation and activity of Xenorhabdus antimicrobi- al compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of Applied Microbiology, 107, 764–759.

    Article  Google Scholar 

  • Brachmann, A. O., Forst, S., Furgani, G. M., Fodor, A., & Bode, H. B. (2006). Xenofuranones a and B: Phenylpyruvate dimers from Xenorhabdus szentirmaii. Journal of Natural Products, 69, 1830–1832.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Dunphy, G. B., & Webster, J. M. (1994). Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biological Control, 4(2), 157–162.

    Article  Google Scholar 

  • Dowds, B. C. A., & Peters, A. (2002). Virulence mechanisms. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 79–98). CABI Publishing: New York.

    Chapter  Google Scholar 

  • Fang, X. L., Li, Z. Z., Wang, Y. H., & Zhang, X. (2011). In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Journal of Applied Microbiology, 111(1), 145–154.

  • Fang, X., Zhang, M., Tang, Q., Wang, Y., & Zhang, X. (2014). Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Scientific Reports, 4, 1–7.

    Google Scholar 

  • Glare, T. R., Jurat-Fuantes, J. L., & O’Callaghan, M. (2017). Basic and applied research: Entomopathogenic bacteria. In L. A. Lacey (Ed.), Microbial control of insect and mite pests (pp. 47–67). San Diego: Academic press.

    Chapter  Google Scholar 

  • Hazir, S., Kaya, H. K., Stock, S. P., & Keskin, N. (2003). Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biocontrol of soil pests. Turkish Journal of Biology, 27, 181–202.

    Google Scholar 

  • Hazir, S., Shapiro-Ilan, D. I., Bock, C. H., Hazir, C., Leite, L. G., & Hotchkiss, M. W. (2016). Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens. European Journal of Plant Pathology, 146, 369–381.

    Article  Google Scholar 

  • Hazir, S., Shapiro-Ilan, D. I., Bock, C. H., & Leite, L. G. (2017). trans-Cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides. Journal of Invertebrate Pathology (in press).

  • Hinchliffe, S. J., Hares, M. C., Dowling, A. J., & Ffrench-Constant, R. H. (2010). Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. Open Toxicology Journal (special issue), 3, 83–100.

    CAS  Google Scholar 

  • Houard, J., Aumelas, A., Noel, T., Pages, S., Givaudan, A., Fitton-Ouhabi, V., Villain-Guillot, P., & Gualtieri, M. (2013). Cabanillasin, a new antifungal metabolite, produced by en- tomopathogenic Xenorhabdus cabanillasii JM26. Journal of Antibiotics, 66, 617–620.

    Article  CAS  PubMed  Google Scholar 

  • Hu, K., Li, J., Li, B., Webster, J. M., & Chen, G. (2006). A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorganic & Medicinal Chemistry, 14, 4677–4681.

    Article  CAS  Google Scholar 

  • Kaya, H. K., & Stock, S. P. (1997). Techniques in nematology. In L. A. Lacey (Ed.), Manual of techniques in insect pathology (pp. 281–324). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. E., & Clarke, D. J. (2012). Nematode parasites and entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 395–424). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Lewis, E. E., Hazir, S., Hodson, A., & Gulcu, B. (2015). Trophic relationships of entomopathogenic nematodes in agricultural habitats. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (pp. 137–163). Switzerland: Springer International Pulishing.

    Google Scholar 

  • Maxwell, P. W., Chen, G., Webster, J. M., & Dunphy, G. B. (1994). Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus. Applied and Environmental Microbiology, 60, 715–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • San-Blas, E., Carrillo, Z., & Parra, Y. (2012). Effect of Xenorhabdus and Photorhabdus bacteria and their exudates on Moniliophthora roreri. Archives of Phytopathology and Plant Protection, 45, 1950–1967.

    Article  Google Scholar 

  • SAS. (2002). SAS software: Version 9.1. Cary: SAS Institute.

    Google Scholar 

  • Selvan, S., Gaugler, R., & Lewis, E. E. (1993). Biochemical energy reserves of entomopathogenic nematodes. Journal of Parasitology, 79, 167–172.

    Article  CAS  Google Scholar 

  • Shapiro-Ilan, D. I., Reilly, C. C., & Hotchkiss, M. W. (2009). Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan. Archives of Phytopathology and Plant Protection, 42, 715–728.

    Article  CAS  Google Scholar 

  • Shapiro-Ilan, D. I., Bock, C. H., & Hotchkiss, M. W. (2014). Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens. Biological Control, 77, 1–6.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Cottrell, T. E., Mizell III, R. F., Horton, D. L., & Abdo, Z. (2015). Field suppression of the peachtree borer, Synanthedon exitiosa, using Steinernema carpocapsae: Effects of irrigation, a sprayable gel and application method. Biological Control, 82, 7–12.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Hazir, S., & Glazer, I. (2017). Basic and applied research: Entomopathogenic nematodes. In L. A. Lacey (Ed.), Microbial agents for control of insect pests: From discovery to commercial development and use (pp. 91–105). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Solter, L. F., Hajek, A. E., & Lacey, L. A. (2017). Exploration for entomopathogens. In L. A. Lacey (Ed.), Microbial control of insect and mite pests (pp. 13–26). San Diego: Academic press.

    Chapter  Google Scholar 

  • Southwood, T. R. E. (1978). Ecological methods: With particular reference to the study of insect populations. London: Chapman and Hall.

    Book  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics. New York, NY: McGraw-Hill Book Company.

    Google Scholar 

  • Webster, J. M., Chen, G., Hu, K., & Li, J. (2002). Bacterial metabolites. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 99–114). London: CABI International.

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank to Technical and Research Council of Turkey (TUBITAK) for supporting S. Hazir within the 2219 fellowship program. D. I. Shapiro-Ilan and C.H. Bock acknowledge the research was partially supported by the USDA National Programs for Crop Protection & Quarantine, and Crop Production (Project Numbers: 6042-22000-023-00D and 6042-21220-012-00D, respectively). We also thank Stacy Byrd, Amy Euston, Benjamin Graham, Domonique Roth-Alday, Unicka Stokes, Wanda Evans, Amy Eubanks and Seth Richards for their valuable technical assistance. This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or recommendation by the USDA for its use.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selcuk Hazir or David I. Shapiro-Ilan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving animal and human rights

The research did not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazir, S., Shapiro-Ilan, D.I., Bock, C.H. et al. Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmaii . Eur J Plant Pathol 150, 297–306 (2018). https://doi.org/10.1007/s10658-017-1277-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1277-7

Keywords

Navigation