Skip to main content

Advertisement

Log in

Response of sorghum stalk pathogens to brown midrib plants and soluble phenolic extracts from near isogenic lines

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Sorghum [Sorghum bicolor (L.) Moench] has drawn attention as potential feedstock for lignocellulosic biofuels production, and reducing lignin is one way to increase conversion efficiency. Little research has been previously conducted to assess the response of reduced lignin sorghum lines to the Fusarium stalk rot pathogens Fusarium verticillioides and Fusarium proliferatum and the charcoal rot pathogen, Macrophomina phaseolina. Loss of function mutations in either the Brown midrib (Bmr) 6 or 12 gene that both encode a monolignol biosynthetic enzyme in the pathway that produces subunits of the lignin polymer, results in reduced lignin content. Near-isogenic bmr6, bmr12, and bmr6 bmr12 lines had previously been developed, which were shown to have significantly reduced lignin content and increased levels of soluble phenolics. In the current study, these lines in two backgrounds were shown to not be more susceptible to F. verticillioides, F. proliferatum and M. phaseolina inoculations, and some bmr lines exhibited increased resistance to F. proliferatum and M. phaseolina, compared to wild-type lines. When the Fusarium stalk rot pathogen, Fusarium thapsinum, was grown on methanol soluble stalk extracts from bmr6 and wild-type plants, it grew significantly faster on medium with bmr6 extract than on wild-type extract or controls. This result suggested that factors other than soluble phenolics from the extract, such as cell wall bound phenolics or inducible defense compounds, contributed to increased resistance observed in bmr6 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Bmr6 :

Cinnamyl alcohol dehydrogenase biosynthetic gene

Bmr12 :

Caffeic acid O-methyltransferase biosynthetic gene

PDA:

Potato dextrose agar

PDB:

Potato dextrose broth

PGA:

Peptone glucose agar

References

  • Afroz, A., Ali, G. M., Mir, A., & Komatsu, S. (2011). Application of proteomics to investigate stress-induced proteins for improvement in crop protection. Plant Cell Reports, 30, 745–763. doi:10.1007/s00299-010-0982-x.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, W. F., & Akin, D. E. (2008). Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. Journal of Industrial Microbiology and Biotechnology, 35, 355–366. doi:10.1007/s10295-007-0291-8.

    Article  CAS  PubMed  Google Scholar 

  • Beekrum, S., Govinden, R., Padayachee, T., & Odhav, B. (2003). Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Additives and Contaminants, 5, 490–493. doi:10.1080/0265203031000098678.

    Article  Google Scholar 

  • Bout, S., & Vermerris, W. (2003). A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Molecular Genetics and Genomics, 269, 205–214. doi:10.1007/s00438-003-0824-4.

    CAS  PubMed  Google Scholar 

  • Bramel-Cox, P. J., & Claflin, L. E. (1989). Selection for resistance to Macrophomina phaseolina and Fusarium moniliforme in sorghum. Crop Science, 29, 1468–1472.

    Article  Google Scholar 

  • Buranov, A. U., & Mazza, G. (2008). Lignin in straw of herbaceous crops. Industrial Crops and Products, 28, 237–259. doi:10.1016/j.indcrop.2008.03.008.

    Article  CAS  Google Scholar 

  • Chandrashekar, A., & Satyanarayana, K. V. (2006). Disease and pest resistance in grains of sorghum and millets. Journal of Cereal Science, 44, 287–304.

    Article  Google Scholar 

  • Christensen, S. A., & Kolomiets, M. V. (2011). The lipid language of plant-fungal interactions. Fungal Genetics and Biology, 48, 4–14. doi:10.1016/j.fgb.2010.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon, M. K., & Chaudhary, D. P. (2015). Biochemical interactions for antibiosis mechanism of resistance to Chilo partellus (Swinhoe) in different maize types. Arthropod-Plant Interactions, 9, 373–382. doi:10.1007/s11829-015-9374-z.

    Article  Google Scholar 

  • Dien, B. S., Sarath, G., Pedersen, J. F., Sattler, S. E., Chen, H., Funnell-Harris, D. L., et al. (2009). Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenergy Research, 2, 153–164. doi:10.1007/s12155-009-9041-2.

    Article  Google Scholar 

  • Dowd, P. F., & Sattler, S. E. (2015). Helicoverpa zea (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) responses to Sorghum bicolor (Poales: Poaceae) tissues from lowered lignin lines. Journal of Insect Science, 15, 1–5. doi:10.1093/jisesa/ieu162.

    Article  Google Scholar 

  • Dowd, P. F., Funnell-Harris, D. L., & Sattler, S. E. (2016). Field damage of sorghum (Sorghum bicolor) with reduced lignin levels by naturally occuring insect pests and pathogens. Journal of Pest Science, 89, 885–895. doi:10.1007/s10340-015-0728-1.

    Article  Google Scholar 

  • Ferrochio, L., Cendoya, E., Farnochi, M. C., Massad, W., & Ramirez, M. L. (2013). Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. International Journal of Food Microbiology, 167, 215–220. doi:10.1016/j.ijfoodmicro.2013.09.005.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, J. O., Moore, K. J., & Jaster, E. H. (1990). Digestion kinetics and cell wall composition of brown midrib sorghum X sudangrass morphological components. Crop Science, 30, 213–219.

    Article  Google Scholar 

  • Frowd, J. A. (1980). Sorghum stalk rots in West Africa. In R. A. F. R. J. Williams & L. K. Mughogho (Eds.), Proceedings of the international workshop on sorghum diseases (pp. 322–324). Patancheru: ICRISAT.

    Google Scholar 

  • Funnell, D. L., & Pedersen, J. F. (2006). Reaction of sorghum lines genetically modified for reduced lignin content to infection by Fusarium and Alternaria spp. Plant Disease, 90, 331–338. doi:10.1094/PD-90-0331.

    Article  CAS  Google Scholar 

  • Funnell-Harris, D. L., & Pedersen, J. F. (2011). Presence of Fusarium spp. in air and soil associated with sorghum fields. Plant Disease, 95, 648–656. doi:10.1094/PDIS-09-10-0671.

    Article  Google Scholar 

  • Funnell-Harris, D. L., Pedersen, J. F., & Sattler, S. E. (2010). Alteration in lignin biosynthesis restricts growth of Fusarium spp in brown midrib sorghum. Phytopathology, 100, 671–681. doi:10.1094/PHYTO-100-7-0671.

    Article  CAS  PubMed  Google Scholar 

  • Funnell-Harris, D. L., Prom, L. K., & Pedersen, J. F. (2013). Isolation and characterization of the grain mold fungi, Cochiobolus and Alternaria spp., from sorghum using semi-selective media and DNA sequence analyses. Canadian Journal of Microbiology, 99, 87–96. doi:10.1139/cjm-2012-0649.

    Article  Google Scholar 

  • Funnell-Harris, D. L., Sattler, S. E., & Pedersen, J. F. (2014). Response of Fusarium thapsinum to sorghum brown midrib lines and to phenolic metabolites. Plant Disease, 98, 1300–1308. doi:10.1094/PDIS-09-13-0980.

    Article  CAS  Google Scholar 

  • Funnell-Harris, D. L., O’Neill, P. M., Sattler, S. E., & Yerka, M. K. (2016). Response of sweet sorghum lines to stalk pathogens Fusarium thapinum and Macrophomina phaseolina. Plant Disease, 100, 896–903. doi:10.1094/PDIS-09-15-1050-RE.

    Article  Google Scholar 

  • Garcia-Lara, S., Burt, A. J., Arnason, J. T., & Bergvinson, D. J. (2010). QTL mapping of tropical maize grain components associated with maize weevil resistance. Crop Science, 50, 815–825. doi:10.2135/cropsci2009.07.0415.

    Article  CAS  Google Scholar 

  • Geiser, D. M., del Mar Jimenez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., et al. (2004). FUSARIUM-id v. 1.0: a DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110, 473–479.

    Article  CAS  Google Scholar 

  • Gozzo, F., & Faoro, F. (2013). Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry, 61, 12473–12491. doi:10.1021/jf404156x.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, W. W., Monson, W. G., & Gaines, T. P. (1981). IVDVD, total sugars, and lignin measurements on normal and brown midrib (bmr) sorghum at various stages of development. Agronomy Journal, 73, 1050–1052.

    Article  CAS  Google Scholar 

  • Humphreys, J. M., & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5, 224–229.

    Article  CAS  PubMed  Google Scholar 

  • Jardine, D. J. (2006). Stalk rots of corn and sorghum. In K. S. University (Ed.).

  • Jardine, D. J., & Leslie, J. F. (1992). Aggressiveness of Gibberella fujikuroi (Fusarium moniliforme) isolates to grain sorghum under greenhouse conditions. Plant Disease, 76, 897–900.

    Article  Google Scholar 

  • Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.

    Article  CAS  PubMed  Google Scholar 

  • Lanoue, A., Burlat, V., Henkes, G. J., Koch, I., Schurr, U., & Rose, U. S. R. (2010). De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytologist, 185, 577–588. doi:10.1111/j.1469.2009.03066.x.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Weng, J.-K., & Chapple, C. (2008). Improvement of biomass through lignin modification. Plant Journal, 2008, 569–581. doi:10.1111/j.1365-313X.2008.03347.x.

    Article  Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for Mixed Models (Second ed.). Cary: SAS Institute, Inc..

    Google Scholar 

  • Lo, S. C. C., & Nicholson, R. L. (1998). Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls: implications for a compensatory role in the defense response. Plant Physiology, 116, 979–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal, S., Mitra, A., & Mallick, N. (2009). Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium wilt. World Journal of Microbiology and Biotechnology, 25, 795–802. doi:10.1007/s11274-008-9951-8.

    Article  CAS  Google Scholar 

  • Mao, J., Burt, A. J., Ramputh, A. I., Simmonds, J., Cass, L., Hubbard, K., et al. (2007). Diverted secondary metabolism and improved resistance to European corn borer (Ostrinia nubilalis) in maize (Zea mays L.) transformed with wheat osalate oxidase. Journal of Agricultural and Food Chemistry, 55, 2582–2589. doi:10.1021/jf063030f.

    Article  CAS  PubMed  Google Scholar 

  • Marita, J. M., Vermeriss, W., Ralph, J., & Hatfield, R. D. (2003). Variations in the cell wall composition of maize brown midrib mutants. Journal of Agricultural and Food Chemistry, 51, 1313–1321. doi:10.1021/jf0260592.

    Article  CAS  PubMed  Google Scholar 

  • Metraux, J. P. (2002). Recent breakthroughs in the study of salicylic acid biosynthesis. Trends in Plant Science, 7, 332–334. doi:10.1016/S1360-1385(02)02313-0.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Oliveira, D. M., Finger-Teixeira, A., Mota, T. R., Salvador, V. H., Moreira-Vilar, F. C., Molinari, H. B. C., et al. (2015). Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 13, 1224–1232. doi:10.1111/pbi.12292.

    Article  PubMed  Google Scholar 

  • Oliver, A. L., Pedersen, J. F., Grant, R. J., Klopfenstein, T. J., & Jose, H. D. (2005). Comparative effects of the sorghum bmr-6 and bmr-12 genes: II. Grain yield, Stover yield, and Stover quality in grain sorghum. Crop Science, 45, 2240–2245. doi:10.2135/cropsci2004.0660.

    Article  CAS  Google Scholar 

  • Palmer, N. A., Sattler, S. E., Saathoff, A. J., Funnell, D., Pedersen, J. F., & Sarath, G. (2008). Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta, 229, 115–127. doi:10.1007/s00425-008-0814-1.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, J. F., Funnell, D., Toy, J. J., Oliver, A. L., & Grant, R. J. (2006). Registration of twelve grain sorghum genetic stocks near-isogenic for the brown midrib genes bmr-6 and bmr-12. Crop Science, 46, 491–492. doi:10.2135/cropsci2005.07-0183.

    Article  Google Scholar 

  • Pedersen, J. F., Toy, J. J., Funnell, D., Sattler, S. E., Oliver, A. L., & Grant, R. J. (2008). Registration of BN611, AN612, BN612, and RN613 sorghum genetic stocks with staked bmr-6 and bmr-12. Journal of Plant Registrations, 2, 258–262. doi:10.3198/jpr2008.01.0065crs.

    Article  Google Scholar 

  • Petrovic, T., Walsh, J. L., Burgess, L. W., & Summerell, B. A. (2009). Fusarium species associated with stalk rot of grain sorghum in the northern grain belt of eastern Australia. Australasian Plant Pathology, 38, 373–379.

    Article  Google Scholar 

  • Picot, A., Atansova-Penichon, V., Pons, S., Marchegay, G., Barreau, C., Pinson-Gadais, L., et al. (2013). Maize kernel antioxidants and theri potential involvement in Fusarium ear rot resistance. Journal of Agricultural and Food Chemistry, 61, 3389–3395. doi:10.1021/jf4006033.

    Article  CAS  PubMed  Google Scholar 

  • Rajewski, J. F., & Francis, C. A. (1991). Defoliation effects on grain fill, stalk rot, and lodging of grain sorghum. Crop Science, 31, 353–359.

    Article  Google Scholar 

  • Rao, K. N., Reddy, V. S., Williams, R. J., & House, L. R. (1980). The ICRISAT charcoal rot resistance program. In R. A. F. R. J. Williams & L. K. Mughogho (Eds.), Proceedings of the international workshop on sorghum diseases (pp. 315–321). International Crops Research Institute for the Semi-Arid Tropics: Hyderabad.

    Google Scholar 

  • Reed, J. E., & Partridge, J. E. (1983). Fungal colonization of stalks and roots of grain sorghum during the growing season. Plant Disease, 67, 417–420.

    Article  Google Scholar 

  • Russin, J. S., Carter, C. H., & Griffin, J. L. (1995). Effects of grain sorghum (Sorghum bicolor) herbicides on charcoal rot fungus. Weed Technology, 9, 343–351.

    CAS  Google Scholar 

  • Saballos, A., Ejeta, G., Sanchez, E., Kang, C. H., & Vermerris, W. (2009). A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCad2 as the Brown midrib6 gene. Genetics, 181, 783–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samapundo, S., De Meulenaer, B., Osei-Nimoh, Lamboni, Y., Debevere, J., & Devlieghere, F. (2007). Can phenolic compounds be used for the protection of corn from fungal invasion and mycotoxin contamination during storage. Food Microbiology, 24, 465–473, doi:10.1016/j.fm.2006.10.003.

  • Sampietro, D. A., Fauguel, C. M., Vattuone, M. A., Presello, D. A., & Catalan, C. A. N. (2013). Phenylpropanoids from maize pericarp: resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. European Journal of Plant Pathology, 135, 105–113. doi:10.1007/s10658-012-0069-3.

    Article  CAS  Google Scholar 

  • Santiago, R., Butron, A., Reid, L. M., Arnason, J. T., Sandoya, G., Souto, X. C., et al. (2006). Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). Journal of Agricultural and Food Chemistry, 54, 9140–9144. doi:10.1021/jf061830.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, R., Reid, L. M., Arnason, J. T., Zhu, X.-Y., Martinez, N., & Malvar, R. A. (2007). Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Journal of Agricultural and Food Chemistry, 55, 5186–5193. doi:10.1021/jf070641e.

    Article  CAS  PubMed  Google Scholar 

  • SAS (2013). SAS 9.4 Help and Documentation. Cary, NC, USA: SAS Institute Inc.

  • Sattler, S. E., Saathoff, A. J., Haas, E. J., Palmer, N. A., Funnell-Harris, D. L., Sarath, G., et al. (2009). A nonsense mutation in a cinnamyl alchohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiology, 150, 584–595. doi:10.1104/pp.109.136408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010a). Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Science, 178, 229–238. doi:10.1016/j.plantsci.2010.01.001.

    Article  CAS  Google Scholar 

  • Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010b). Efficacy of singular and stacked brown midrib 6 and 12 in the modification of lignocellulose and grain chemistry. Journal of Agricultural and Food Chemistry, 58, 3611–3616. doi:10.1021/jf903784j.

    Article  CAS  PubMed  Google Scholar 

  • Sattler, S. E., Palmer, N. A., Saballos, A., Greene, A. M., Xin, Z., Sarath, G., et al. (2012). Identification and characterization of four misssense mutations in Brown midrib 12 (Bmr12), the caffeic O-methyltransferase (COMT) of sorghum. Bioenergy Research, 5, 855–865. doi:10.1007/s12155-012-9197-z.

    Article  CAS  Google Scholar 

  • Sattler, S. E., Saballos, A., Xin, Z., Funnell-Harris, D. L., Vermeriss, W., & Pedersen, J. F. (2014). Characterization of novel sorghum brown midrib mutants from an EMS-mutagenized population. G3: Genes - Genomes - Genetics, 4, 2115–2124. doi:10.1534/g3.114.014001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scully, E. D., Gries, T., Funnell-Harris, D. L., Xin, Z., Kovacs, F. A., Vermeriss, W., et al. (2016). Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. Journal of Integrative Plant Biology, 58, 136–149. doi:10.1111/jipb.12375.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulose materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Tenkouano, A., Miller, F. R., Frederiksen, R. A., & Rosenow, D. T. (1993). Genetics of nonsenescence and charcoal rot resistance in sorghum. Theoretical and Applied Genetics, 85, 644–648.

    Article  CAS  PubMed  Google Scholar 

  • Tesso, T., & Ejeta, G. (2011). Stalk strength and reaction to infection by Macrophomina phaseolina of brown midrib maize (Zea mays) and sorghum (Sorghum bicolor). Field Crops Research, 120, 271–275. doi:10.1016/j.fcr.2010.10.015.

    Article  Google Scholar 

  • Tesso, T. T., Claflin, L. E., & Tuinstra, M. R. (2005). Analysis of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Science, 45, 645–652.

    Article  CAS  Google Scholar 

  • Valette, C., Andary, C., Geiger, J. P., Sarah, J. L., & Nicole, M. (1998). Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similus. Phytopathology, 88, 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  • Weng, J. K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytologist, 187, 273–285. doi:10.1111/j.1469–8137.

    Article  CAS  PubMed  Google Scholar 

  • Wuyts, N., Lognay, G., Verscheure, M., Marlier, M., De Waele, D., & Swennen, R. (2007). Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana Musa spp. Plant Pathology, 56, 878–890. doi:10.1111/j.1365-3059.2007.01607.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institute of Food & Agriculture grant number 2011-67009-30026 and United States Department of Agriculture, Agricultural Research Service Current Research Information System project number 5440-21220-032-00D. The authors thank P. Dowd for valuable suggestions; J. Toy for production and maintenance of greenhouse grown grain; and S. Timmons for technical assistance. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of source. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna L. Funnell-Harris.

Additional information

Jeffrey F. Pedersen is retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funnell-Harris, D.L., O’Neill, P.M., Sattler, S.E. et al. Response of sorghum stalk pathogens to brown midrib plants and soluble phenolic extracts from near isogenic lines. Eur J Plant Pathol 148, 941–953 (2017). https://doi.org/10.1007/s10658-017-1148-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1148-2

Key words

Navigation