Skip to main content

Advertisement

Log in

Effect of fumonisin B1 on the emergence, growth and ceramide synthase gene expression of cowpea (Vigna unguiculata (L.) Walp)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cowpea (Vigna unguiculata) is a nutritious leguminous crop cultivated by many smallholder farmers in developing countries of the world. Fusarium spp. and fumonisin B1 (FB1) are known to be associated with cowpea seed. This study was performed to determine the phytotoxic effects of FB1 on cowpea seedlings and to provide insight on the effect of the toxin on ceramide synthase gene expression. Surface-disinfected seeds were imbibed in FB1 solutions of 5, 20 and 40 mg/L concentrations. Additionally, seeds were artificially inoculated with three different FB1-producing Fusarium verticillioides strains. Percentage emergence was reduced by all three FB1 concentrations and seeds inoculated with F. verticillioides strain MRC 8265. Seedlings imbibed in 40 mg/L FB1 had reduced seedling length whilst seedling mass was reduced by all treatments. Total chlorophyll content was higher in leaves of seedlings raised from seeds imbibed in all three FB1 concentrations when compared to the controls. To evaluate the effect of FB1 on ceramide synthase gene expression, seeds were imbibed in a 20 mg/L FB1 solution. RNA was extracted from untreated and treated samples after 0, 3 and 12 dpi with the latter being divided into shoot and roots samples. Semi-quantitative reverse transcription PCR suggested that there were no significant differences in ceramide synthase gene expression between the control and toxin treated cowpea samples. It thus appears that FB1 did not influence ceramide synthase gene expression in cowpea. Although FB1 exhibited phytotoxic effects on developing cowpea seedlings, the observed physiological and morphological changes were not a result of down regulation of ceramide synthase gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, H. K., & Boyette, C. (1992). Phytotoxicity of fumonisin B1 on weed and crop species. Weed Technology, 548–552.

  • Abbas, H. K., Tanaka, T., Duke, S. O., Porter, J. K., Wray, E. M., Hodges, L., et al. (1994). Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiology, 106(3), 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas, H. K., Duke, S. O., Paul, R. N., Riley, R. T., & Tanaka, T. (1995). AAL-toxin, a potent natural herbicide which disrupts sphingolipid metabolism of plants. Pesticide Science, 43(3), 181–187.

    Article  CAS  Google Scholar 

  • Abbas, H., Duke, S., Merrill, A., Wang, E., & Shier, W. (1998). Phytotoxicity of australifungin, AAL-toxins and fumonisin B1 to Lemna pausicostata. Phytochemistry, 47(8), 1509–1514.

    Article  CAS  Google Scholar 

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630–633.

    Article  Google Scholar 

  • Adekunle, A. A., & Bassir, O. (1973). The effects of aflatoxin B1 and palmotoxins B0 and G0 on the germination and leaf colour of the cowpea (Vigna sinensis). Mycopathologia et Mycologia Applicata, 51(4), 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Anjorin, S. T., Makun, H. A., Adesina, T., & Kudu, I. (2008). Effects of Fusarium verticilloides, its metabolites and neem leaf extract on germination and vigour indices of maize (Zea mays L.). African Journal of Biotechnology, 7(14).

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.

  • Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113–116.

    Article  CAS  Google Scholar 

  • Danielsen, S., & Jensen, F. (1998). Relationships between seed germination, fumonisin content, and Fusarium verticillioides infection in selected maize samples from different regions of Costa Rica. Plant Pathology, 47(5), 609–614.

  • Desjardins, A. E., & Hohn, T. M. (1997). Mycotoxins in plant pathogenesis. Molecular Plant-Microbe Interactions, 10(2), 147–152.

    Article  CAS  Google Scholar 

  • Doehlert, D. C., Knutson, C. A., & Vesonder, R. F. (1994). Phytotoxic effects of fumonisin B1 on maize seedling growth. Mycopathologia, 127(2), 117–121.

    Article  CAS  Google Scholar 

  • Ehlers, J., & Hall, A. (1997). Cowpea (Vigna unguiculata L. Walp.). Field Crops Research, 53(1), 187–204.

  • Gazendam, I. (2012). Identification and functional evaluation of a drought-induced “late embryogenesis abundant” gene from cowpea plants. PhD Thesis. Univeristy of Pretoria.

  • Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178–D1186.

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Nájera, N., Munoz-Clares, R. A., Palacios-Bahena, S., Ramírez, J., Sanchez-Nieto, S., Plasencia, J., et al. (2005). Fumonisin B1, a sphingoid toxin, is a potent inhibitor of the plasma membrane H + −ATPase. Planta, 221(4), 589–596.

    Article  PubMed  Google Scholar 

  • Hegde, D., & Hiremath, R. (1987). Seed mycoflora of cowpea and its control by fungicides. Seed Research, 15(1), 60–65.

    Google Scholar 

  • Houssou, P., Ahohuendo, B., Fandohan, P., Kpodo, K., Hounhouigan, D., & Jakobsen, M. (2009). Natural infection of cowpea (Vigna unguiculata (L.) Walp.) by toxigenic fungi and mycotoxin contamination in Benin, West Africa. Journal of Stored Products Research, 45(1), 40–44.

    Article  CAS  Google Scholar 

  • Kritzinger, Q., Aveling, T. A., Marasas, W. F., Rheeder, J. P., Van Der Westhuizen, L., & Shephard, G. S. (2003). Mycoflora and fumonisin mycotoxins associated with cowpea [Vigna unguiculata (L.) Walp] seeds. Journal of Agricultural and Food Chemistry, 51(8), 2188–2192.

  • Kritzinger, Q., Aveling, T., & Van der Merwe, C. (2006). Phytotoxic effects of fumonisin B1 on cowpea seed. Phytoparasitica, 34(2), 178–186.

  • Lamprecht, S., Marasas, W., Alberts, J., Cawood, M., Gelderblom, W., Shephard, G., et al. (1994). Phytotoxicity of fumonisins and TA-toxin to corn and tomato. Phytopathology, 84(4), 383–391.

    Article  CAS  Google Scholar 

  • Lynch, D. V. (2000). Enzymes of sphingolipid metabolism in plants. Methods in Enzymology, 311, 130.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, D. V., & Dunn, T. M. (2004). An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist, 161(3), 677–702.

    Article  CAS  Google Scholar 

  • Marion, J., Bach, L., Bellec, Y., Meyer, C., Gissot, L., & Faure, J. D. (2008). Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. The Plant Journal, 56(1), 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Markham, J. E., Molino, D., Gissot, L., Bellec, Y., Hématy, K., Marion, J., et al. (2011). Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. The Plant Cell, 23(6), 2362–2378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill Jr., A. H., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109(Suppl 2), 283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadubinská, M., Ritieni, A., Moretti, A., & Srobarova, A. (2003). Chlorophyll content in maize plants after treatment with fusariotoxins. Biologia (Slovak Republic).

  • Pata, M. O., Hannun, Y. A., & Ng, C. K. Y. (2010). Plant sphingolipids: decoding the enigma of the sphinx. New Phytologist, 185(3), 611–630.

    Article  CAS  PubMed  Google Scholar 

  • Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 68(5), 2101–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441–448. doi:10.1016/0022-2836(75)90213-2.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B., Ajeigbe, H., Tarawali, S. A., Fernandez-Rivera, S., & Abubakar, M. (2003). Improving the production and utilization of cowpea as food and fodder. Field Crops Research, 84(1), 169–177.

    Article  Google Scholar 

  • Soriano, J., Gonzalez, L., & Catala, A. (2005). Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research, 44(6), 345–356.

    Article  CAS  PubMed  Google Scholar 

  • Sperling, P., & Heinz, E. (2003). Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1632(1), 1–15.

    CAS  Google Scholar 

  • Ternes, P., Feussner, K., Werner, S., Lerche, J., Iven, T., Heilmann, I., et al. (2011). Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytologist, 192(4), 841–854.

  • Uzogara, S., & Ofuya, Z. (1992). Processing and utilization of cowpeas in developing countries: a review. Journal of Food Processing and Preservation, 16(2), 105–147.

    Article  Google Scholar 

  • Wang, E., Norred, W., Bacon, C., Riley, R., & Merrill, A. H. (1991). Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with fusarium moniliforme. Journal of Biological Chemistry, 266(22), 14486–14490.

    CAS  PubMed  Google Scholar 

  • Williams, L. D., Glenn, A. E., Zimeri, A. M., Bacon, C. W., Smith, M. A., & Riley, R. T. (2007). Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. Journal of Agricultural and Food Chemistry, 55(8), 2937–2946.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D., & Cooper, J. (1969). Effect of light intensity during growth on leaf anatomy and subsequent light-saturated photosynthesis among contrasting Lolium genotypes. New Phytologist, 68(4), 1125–1135.

    Article  CAS  Google Scholar 

  • Winter, E., & Ponting, C. P. (2002). TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends in Biochemical Sciences, 27(8), 381–383.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi, R. K. (2012). Pathogenic response of seed mycoflora associated with cowpea, Vigna unguiculata. Archives of Phytopathology and Plant Protection, 45(15), 1790–1795.

  • Zonno, M., & Vurro, M. (2002). Inhibition of germination of Orobanche ramosa seeds by fusarium toxins. Phytoparasitica, 30(5), 519–524.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quenton Kritzinger.

Electronic supplementary material

Online Resource 1.

The nucleotide sequences of the conserved region of cowpea ceramide synthase gene fragment and the ceramide synthase sequences of two closely related legume species (G. max and P. vulgaris) and one distantly related plant species (A. thaliana). Primer binding sites are indicated by green arrows. (GIF 265 kb)

High Resolution Image (TIFF 26681 kb)

Online Resource 2.

The amino acid sequences of the conserved region of the ceramide synthase protein of three closely related legume species and one distantly related plant species (A. thaliana). GM- Glycine max; PV- Phaeolus vulgaris; AT- Arabidopsis thaliana; VU- Vigna unguiculata. (GIF 35 kb)

High Resolution Image (TIFF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotze, R.G., Crampton, B.G. & Kritzinger, Q. Effect of fumonisin B1 on the emergence, growth and ceramide synthase gene expression of cowpea (Vigna unguiculata (L.) Walp). Eur J Plant Pathol 148, 295–306 (2017). https://doi.org/10.1007/s10658-016-1089-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1089-1

Keywords

Navigation