Skip to main content
Log in

Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Endophytic root-colonizing fungi are an intriguing group of microorganisms that have the ability to form mutualistic associations with plants. Many endophytes confer benefits to their hosts such as plant growth promotion and disease suppression. Their potential to promote agro-ecosystem efficiency through beneficial impacts on their hosts is of great interest for agriculture and may contribute to reduced needs for agrochemicals. We investigated the ability of three Fusarium equiseti (Fe) isolates to endophytically colonize pea roots and the influence of endophytic development on plant growth, pathogen proliferation and root rot disease caused by F. avenaceum (Fa) and Peyronellaea pinodella (Pp). Fe was inoculated following sowing, while Fa and Pp were either inoculated simultaneously with Fe or 5 days after Fe. When only Fe was inoculated, two of the isolates significantly promoted plant growth at the end of the 4 week experiment. Simultaneous inoculation of Fe with Fa or pre-inoculation of pea plants for 5 days with any one of the three F. equiseti isolates resulted in disease suppression and significant reduction of Fa population, particularly in the root cortex. However, Fe isolates significantly reduced disease and root cortex colonization rates of Pp only in the plants inoculated with Fe 5 days before the pathogen. This study shows that F. equiseti can promote pea growth and has the ability to alter the interaction pea - Fa/Pp, consequently leading to reduced root rot disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam, S. S., Sakamoto, K., & Inubushi, K. (2011). Biocontrol efficiency of Fusarium wilt diseases by a root-colonizing fungus Penicillium sp. Soil Science & Plant Nutrition, 57(2), 204–212. doi:10.1080/00380768.2011.564996.

    Article  Google Scholar 

  • Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649–15654.

    Article  CAS  Google Scholar 

  • Arora, D. K., Bridge, P. D., & Bhatnagar, D. (2004). Fungal biotechnology in agricultural, food, and environmental applications. New York: Dekker.

    Google Scholar 

  • Baćanović, J. (2015). Pathogens occurring in the winter pea – maize – winter wheat rotation, their host specificity and the potential of compost in suppressing foot and root disease of peas (Doctoral thesis). Witzenhausen.: University of Kassel Retrieved from http://nbn-resolving.de/urn:nbn:de:hebis:34-2015091749047.

    Google Scholar 

  • Benhamou, N., Garand, C., & Goulet, A. (2001). Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by nonpathogenic Fusarium oxysporum Fo47. Phytopathology, 91(8), 730–740. doi:10.1094/PHYTO.2001.91.8.730.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300. doi:10.0035/9246/95/57289.

    Google Scholar 

  • Boerema, G. H., de Gruyter, J., Noordeloos, M. E., & Hamers, M. E. C. (2004). Phoma identification manual: differentiation of specific and infra-specific taxa in culture. Wallingford, Oxfordshire, UK: CABI publishing.

    Book  Google Scholar 

  • Chittem, K., Mathew, F. M., Gregoire, M., Lamppa, R. S., Chang, Y. W., Markell, S. G., et al. (2015). Identification and characterization of Fusarium spp. associated with root rots of field pea in North Dakota. European Journal of Plant Pathology, 143(4), 641–649. doi:10.1007/s10658-015-0714-8.

    Article  Google Scholar 

  • Conover, W. J. (1999). Practical nonparametric statistics. New York, USA: John Wiley & Sons, Inc.

  • Core Team, R. (2013). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing http://www.R-project.org/.

    Google Scholar 

  • Duijff, B. J., Recorbet, G., Bakker, P. A. H. M., Loper, J. E., & Lemanceau, P. (1999). Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology, 89(11), 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  • Farr, D.F., & Rossman, A.Y. (2016) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved August 4, 2016, from http://nt.ars-grin.gov/fungaldatabases/.

  • Feng, J., Hwang, R., Chang, K. F., Hwang, S. F., Strelkov, S. E., Gossen, B. D., et al. (2010). Genetic variation in Fusarium avenaceum causing root rot on field pea. Plant Pathology, 59(5), 845–852. doi:10.1111/j.1365-3059.2010.02313.x.

    Article  CAS  Google Scholar 

  • Forsyth, L. M., Smith, L. J., & Aitken, E. A. B. (2006). Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycological Research, 110(8), 929–935. doi:10.1016/j.mycres.2006.03.008.

    Article  PubMed  Google Scholar 

  • Horinouchi, H., Muslim, A., Suzuki, T., & Hyakumachi, M. (2007). Fusarium equiseti GF191 as an effective biocontrol agent against Fusarium crown and root rot of tomato in rock wool systems. Crop Protection, 26(10), 1514–1523. doi:10.1016/j.cropro.2006.12.018.

    Article  Google Scholar 

  • Hyakumachi, M., & Kubota, M. (2004). Fungi as plant growth promoter and disease suppressor. In D. K. Arora, P. D. Bridge, & D. Bhatnagar (Eds.), Fungal biotechnology in agricultural, food, and environmental applications (pp. 101–110). New York: Dekker.

    Google Scholar 

  • Kavroulakis, N., Ntougias, S., Zervakis, G. I., Ehaliotis, C., Haralampidis, K., & Papadopoulou, K. K. (2007). Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58(14), 3853–3864. doi:10.1093/jxb/erm230.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, A. A. (1993). A fungal pathogen with potential for biocontrol of Striga hermonthica (Scrophulariaceae). Entomophaga, 38(4), 459–460.

    Article  Google Scholar 

  • Kobayashi, D. Y., & Palumbo, J. D. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. In C. W. Bacon & J. F. White (Eds.), Microbial endophytes (pp. 199–236). New York: Dekker.

    Google Scholar 

  • Larkin, R. P., & Fravel, D. R. (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease, 82(9), 1022–1028.

    Article  Google Scholar 

  • Larkin, R. P., & Fravel, D. R. (1999). Mechanisms of action and dose-response relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology, 89(12), 1152–1161. doi:10.1094/PHYTO.1999.89.12.1152.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Pan, J. J., & May, G. (2009). Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiology Letters, 299(1), 31–37. doi:10.1111/j.1574-6968.2009.01719.x.

    Article  CAS  PubMed  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames, Iowa, USA: Blackwell publishing.

    Book  Google Scholar 

  • Macia-Vicente, J. G., Jansson, H. B., Abdullah, S. K., Descals, E., Salinas, J., & Lopez-Llorca, L. V. (2008a). Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiology Ecology, 64(1), 90–105. doi:10.1111/j.1574-6941.2007.00443.x.

    Article  CAS  PubMed  Google Scholar 

  • Macia-Vicente, J. G., Jansson, H. B., Mendgen, K., & Lopez-Llorca, L. V. (2008b). Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Canadian Journal of Microbiology, 54, 600–609. doi:10.1139/W08-047.

    Article  CAS  PubMed  Google Scholar 

  • Macia-Vicente, J. G., Jansson, H. B., Talbot, N. J., & Lopez-Llorca, L. V. (2009a). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytologist, 182(1), 213–228. doi:10.1111/j.1469-8137.2008.02743.x.

    Article  CAS  PubMed  Google Scholar 

  • Macia-Vicente, J. G., Rosso, L. C., Ciancio, A., Jansson, H. B., & Lopez-Llorca, L. V. (2009b). Colonization of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia : effect on plant growth and disease. Annals of Applied Biology, 155(3), 391–401. doi:10.1111/j.1744-7348.2009.00352.x.

    Article  Google Scholar 

  • Martínez-Medina, A., Pascual, J. A., Lloret, E., & Roldán, A. (2009). Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. Journal of the Science of Food and Agriculture, 89(11), 1843–1850. doi:10.1002/jsfa.3660.

    Article  Google Scholar 

  • McAllister, C. B., Garcia-Garrido, J. M., Garcia-Romera, I., Godeas, A., & Ocampo, J. A. (1997). Interaction between Alternaria alternata or Fusarium equiseti and Glomus mosseae and its effects on plant growth. Biology and Fertility of Soils, 24(3), 301–305.

    Article  Google Scholar 

  • Nassar, A. H., El-Tarabily, K. A., & Sivasithamparam, K. (2005). Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biology and Fertility of Soils, 42(2), 97–108. doi:10.1007/s00374-005-0008-y.

    Article  CAS  Google Scholar 

  • Nelson, H., Ouchi, S., Shiraishi, T., & Oku, H. (1992). Induced resistance to Fusarium wilt of tomato and cucumber: symptoms and pathogen proliferation. Annals of the Phytopathological Society of Japan, 58, 659–663.

    Article  Google Scholar 

  • Nitao, J. K., Meyer, S. L. F., Schmidt, W. F., Fettinger, J. C., & Chitwood, D. J. (2001). Nematode-antagonistic trichothecenes from Fusarium equiseti. Journal of Chemical Ecology, 27(5), 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Pflughöft, O. (2008). Pilzkrankheiten in Körnerfuttererbsen (Pisum sativum L.): Diagnose, Epidemiologie, Ertragsrelevanz und Bekämpfung. Göttingen, Germany: Georg-August-University Göttingen Retrieved from https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-000D-F244-3/pflughoeft.pdf?sequence=1.

    Google Scholar 

  • Pflughöft, O., Merker, C., von Tiedemann, A., & Schäfer, B. C. (2012). Zur Verbreitung und Bedeutung von Pilzkrankheiten in Körnerfuttererbsen (Pisum sativum L.) in Deutschland. Gesunde Pflanzen, 64(1), 39–48. doi:10.1007/s10343-011-0270-x.

    Article  Google Scholar 

  • Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 59(5), 1109–1114. doi:10.1093/jxb/erm342.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R., Redman, R., & Henson, J. (2004). The role of fungal symbioses in the adaptation of plants to high stress environments. Mitigation and Adaptation Strategies for Global Change, 9(3), 261–272.

    Article  Google Scholar 

  • Rodriguez-Galvez, E., & Mendgen, K. (1995). The infection process of Fusarium oxysporum in cotton root tips. Protoplasma, 189(1–2), 61–72.

    Article  Google Scholar 

  • Saldajeno, M. G. B., & Hyakumachi, M. (2011). The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Annals of Applied Biology, 159(1), 28–40. doi:10.1111/j.1744-7348.2011.00471.x.

    Article  Google Scholar 

  • Satyaprasad, K., Baetaman, G. L., & Ward, E. (2000). Comparisons of isolates of Fusarium avenaceum from white lupin and other crops by pathogenicity tests, DNA analyses and vegetative compatibility tests. Journal of Phytopathology, 148(4), 211–219. doi:10.1046/j.1439-0434.2000.00494.x.

    Article  CAS  Google Scholar 

  • Schardl, C. L., Leuchtmann, A., & Spiering, M. J. (2004). Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology, 55(1), 315–340. doi:10.1146/annurev.arplant.55.031903.141735.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661–686. doi:10.1017/S095375620500273X.

    Article  PubMed  Google Scholar 

  • Schulz, B. J. E., Boyle, C. J. C., & Sieber, T. N. (Eds.) (2006). Microbial root endophytes. Berlin: Springer.

    Google Scholar 

  • Sieber, T. N. (2002). Fungal root endophytes. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: the hidden half (pp. 887–917). New York, Basel: Marcel Dekker.

    Chapter  Google Scholar 

  • Šišić, A., Baćanović, J., Bruns, C., & Finckh, M. R. (2015). Anfälligkeit einer Sommererbse gegenüber Isolaten von Pathogenarten, die von symptomfreien Kleearten und Wicken isoliert wurden. [Susceptibility of a spring pea variety to pathogen isolated from asymptomatic clover species and vetch]. In In Beiträge zur 13. Wissenschaftstagung Ökologischer Landbau Am Mut hängt der Erfolg: Rückblicke und Ausblicke auf die ökologische Landbewirtschaftung (pp. 178–180). Verlag Dr. Köster, Berlin: Presented at the 13. Wissenschaftstagung Ökologischer Landbau, Eberswalde http://orgprints.org/view/projects/int - conf - wita - 2015.htm.

    Google Scholar 

  • Stone, J. K., Bacon, C. W., & White, J. F. (2000). An overview of endophytic microbes: endophytism defined. In C. W. Bacon & J. F. White (Eds.), Microbial endophytes (pp. 3–30). New York: Dekker.

    Google Scholar 

  • Wang, X., Qin, J., Chen, W., Zhou, Y., Ren, A., & Gao, Y. (2016). Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment. European Journal of Plant Pathology, 144(3), 477–486. doi:10.1007/s10658-015-0788-3.

    Article  CAS  Google Scholar 

  • Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S. M., Kim, J. G., & Lee, I. J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. Journal of Plant Interactions, 10(1), 280–287. doi:10.1080/17429145.2015.1079743.

    Article  CAS  Google Scholar 

  • Watanabe, T. (2002). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Boca Raton, Florida, USA: CRC Press.

    Book  Google Scholar 

  • Yates, I. E., Bacon, C. W., & Hinton, D. M. (1997). Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology. Plant Disease, 81(7), 723–728.

    Article  Google Scholar 

  • Yli-Mattila, T., Paavanen, S., Hannukkala, A., Parikka, P., Tahvonen, R., & Karjalainen, R. (1996). Isozyme and RAPD-PCR analyses of Fusarium avenaceum strains from Finland. Plant Pathology, 45(1), 126–134.

    Article  Google Scholar 

  • You, Y. H., Yoon, H., Kang, S. M., Shin, J. H., Choo, Y. S., Lee, I. J., et al. (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. Journal of Microbiology and Biotechnology, 22(11), 1549–1556. doi:10.4014/jmb.1205.05010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Bernard Tivoli, the National Institute of Agricultural Research (INRA) France, for kindly supplying Peyronellaea pinodella strain. Part of this work was financed by the European Union FP7 Project n.289277: OSCAR (Optimizing Subsidiary Crop Applications in Rotations), and A. Š. was supported by a doctoral scholarship funded by the University of Kassel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Šišić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šišić, A., Baćanović, J. & Finckh, M.R. Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella . Eur J Plant Pathol 148, 271–282 (2017). https://doi.org/10.1007/s10658-016-1086-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1086-4

Keywords

Navigation